Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 341: 112014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309473

RESUMEN

Brassinosteroids (BRs) function importantly in plant growth and development, but the roles in regulating fruit development and anthocyanin pigmentation remain unclear. Eggplant (Solanum melongena L.) is an important Solanaceae vegetable crop rich in anthocyanins. The fruit size and coloration are important agronomic traits for eggplant breeding. In this study, transgenic eggplant exhibiting endogenous BRs deficiency was created by overexpressing a heterologous BRs-inactivating enzyme gene GhPAG1 driven by CaMV 35 S promoter. 35 S::GhPAG1 eggplant exhibited severe dwarfism, reduced fruit size, and less anthocyanin accumulation. Microscopic observation showed that the cell size of 35 S::GhPAG1 eggplant was significantly reduced compared to WT. Furthermore, the levels of IAA, ME-IAA, and active JAs (JA, JA-ILE, and H2JA) all decreased in 35 S::GhPAG1 eggplant fruit. RNA-Seq analyses showed a decrease in the expression of genes involved in cell elongation, auxin signaling, and JA signaling. Besides, overexpression of GhPAG1 significantly downregulated anthocyanin biosynthetic genes and associated transcription regulators. Altogether, these results strongly suggest that endogenous brassinosteroid deficiency arising from GhPAG1 overexpression impacts eggplant fruit development and anthocyanin coloration mainly by altering hormone homeostasis.


Asunto(s)
Antocianinas , Solanum melongena , Antocianinas/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Frutas/metabolismo , Fitomejoramiento , Hormonas/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas
2.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2644-2655, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584121

RESUMEN

Nearly a quarter of the world's population is infected with Mycobacterium tuberculosis and remains long-term asymptomatic infection. Rv2626c is a latent infection-related protein regulated by DosR of M. tuberculosis. In this study, the Rv2626c protein was prokaryotically expressed and purified, and its immunobiological characteristics were analyzed using RAW264.7 cells and mice as infection models. SDS-PAGE and Western blotting analysis showed that the Rv2626c-His fusion protein was mainly expressed in soluble form and specifically reacted with the rabbit anti-H37RV polyclonal serum. In addition, we found that the Rv2626c protein bound to the surface of RAW264.7 macrophages and up-regulated the production of NO. Moreover, the Rv2626c protein significantly induced the production of pro-inflammatory cytokines IFN-γ, TNF-α, IL-6 and MCP-1, and induced strong Th1-tendency immune response. These results may help to reveal the pathogenic mechanism of M. tuberculosis and facilitate the development of new tuberculosis vaccine.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Conejos , Mycobacterium tuberculosis/genética , Antígenos Bacterianos , Citocinas , Inmunidad Celular
3.
Int J Biol Macromol ; 234: 123729, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801296

RESUMEN

In higher plants, COP1 (Constitutively Photomorphogenic 1) acts as a central regulator of light-signaling networks and globally conditions the target proteins via the ubiquitin-proteasome pathway. However, the function of COP1-interacting proteins in light-regulated fruit coloration and development remains unknown in Solanaceous plants. Here, a COP1-interacting protein-encoding gene, SmCIP7, expressed specifically in the eggplant (Solanum melongena L.) fruit, was isolated. Gene-specific silencing of SmCIP7 using RNA interference (RNAi) significantly altered fruit coloration, fruit size, flesh browning, and seed yield. SmCIP7-RNAi fruits showed evident repression of the accumulation of anthocyanins and chlorophyll, indicating functional similarities between SmCIP7 and AtCIP7. However, the reduced fruit size and seed yield indicated SmCIP7 had evolved a distinctly new function. With the comprehensive application of HPLC-MS, RNA-seq, qRT-PCR, Y2H, BiFC, LCI, and dual-luciferase reporter system (DLR™), it was found that SmCIP7, a COP1 interactive protein in light signaling promoted anthocyanin accumulation, probably by regulating the transcription of SmTT8. Additionally, the drastic up-regulation of SmYABBY1, a homologous gene of SlFAS, might account for the strongly retarded fruit growth in SmCIP7-RNAi eggplant. Altogether, this study proved that SmCIP7 is an essential regulatory gene to modulate fruit coloration and development, serving as a key gene locus in eggplant molecular breeding.


Asunto(s)
Frutas , Solanum melongena , Antocianinas/genética , Antocianinas/metabolismo , Solanum melongena/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas
4.
Microorganisms ; 10(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35888981

RESUMEN

Listeria monocytogenes (Lm) is a ubiquitous foodborne pathogen comprising of 14 serotypes, of which serovar 4h isolates belonging to hybrid sub-lineage Ⅱ exhibit hypervirulent features. LMxysn_1693 of serovar 4h Lm XYSN, a member of genomic island-7 (GI-7), is predicted to a membrane protein with unknown function, which is conserved in serovar 4h Listeria monocytogenes. Under bile salts stress, Lm XYSN strain lacking LMxysn_1693 (XYSN∆1693) exhibited a stationary phase growth defect as well as a reduction in biofilm formation and strikingly down-regulated bile-salts-resistant genes and virulent genes. Particularly, LMxysn_1693 protein plays a crucial role in Lm XYSN adhesion and invasion to intestinal epithelial cells, as well as colonization in the ileum of mice. Taken together, these findings indicate that the LMxysn_1693 gene encodes a component of the putative ABC transporter system, synthetically interacts with genes involved in bile resistance, biofilm formation and virulence, and thus contributes to Listeria monocytogenes survival within and outside the host.

5.
Front Nutr ; 9: 875360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571884

RESUMEN

The color and aroma are the significant traits of vegetables and fruits, but the metabolic and molecular mechanisms underlying anthocyanin accumulation and aroma formation remain almost unknown in fennel (Anethum foeniculum L.), which is a crucial vegetable crop and grown widely for aromatic leaves and bulbs. Here, ten major anthocyanins identified and quantified by ultra-high performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) were mainly responsible for the coloration of purple fennel leaf. With the application of GC-MS, it was found that the reduced volatile phenylpropanoids including isoeugenol, trans-isoeugenol, and apiol chiefly account for the characteristic aroma changes of the purple fennel. Moreover, the characteristic anthocyanin coloration and aroma formation in purple fennel were systematically studied with the integrated transcriptomics and metabolomics. The critical genes associated with the biosynthesis and regulation of anthocyanins and volatile phenylpropanoids were isolated and studied carefully in transiently transfected tobacco cells and transgenic tomato plants. Together with the results of UHPLC-Q-Orbitrap HRMS, RT-qPCR, and yeast two hybrid (Y2H), it is proved that the metabolic flux redirection of phenylpropanoid pathway primarily regulated by a functional MYB-bHLH-WD40 complex consisting of AfTT8, AfMYB7, and AfTTG1 accounts for the characteristic anthocyanin coloration and aroma formation in purple fennel leaf. The systematic understanding of the anthocyanin accumulation and aroma formation will assist in the improvement of fennel resource utilization and breeding.

6.
Hum Vaccin Immunother ; 17(6): 1568-1577, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33449866

RESUMEN

Cervical cancer is a leading cause of high mortality in women in developing countries and has a serious impact on women's health. Human papilloma virus (HPV) prophylactic vaccines have been produced and may hold promise for reducing the incidence of cervical cancer. However, the limitations of current HPV vaccine strategies make the development of HPV therapeutic vaccines particularly important for the treatment of HPV related lesions. Our previous work has demonstrated that LM4Δhly::E7 was safe and effective in inducing antitumor effect by antigen-specific cellular immune responses and direct killing of tumor cell on a cervical cancer model. In this study, the codon usage effect of a novel Listeria-based cervical cancer vaccine LM4Δhly::E7-1, was evaluated for effects of codon-optimized E7 expression, cellular immune response and therapeutic efficacy in a tumor-bearing murine model. Our data demonstrated that up-regulated expression of E7 was strikingly elevated by codon usage optimization, and thus induced significantly higher Th1-biased immunity, lymphocyte proliferation, and strong specific CTL activity ex-vivo compared with LM4Δhly::E7-treated mice. Furthermore, LM4Δhly::E7-1 enhanced a remarkable therapeutic effect in establishing tumors. Taken together, our results suggest that codon usage optimization is an important consideration in constructing live bacterial-vectored vaccines and is required for promoting effective T cell responses.


Asunto(s)
Vacunas contra el Cáncer , Listeria , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Animales , Codón , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas E7 de Papillomavirus/genética , Linfocitos T Citotóxicos
7.
Front Microbiol ; 11: 569544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362730

RESUMEN

Listeria monocytogenes (Lm) is a foodborne zoonotic pathogen that causes listeriosis with a mortality rate of 20-30%. Serovar 4b and 1/2b isolates account for most of listeriosis outbreaks, however, no listeriosis vaccine is available for either prophylactic or therapeutic use. Here, we developed a triple-virulence-genes deletion vaccine strain, and evaluated its safety, immunogenicity, and cross-protective efficiency. The virulence of NTSNΔactA/plcB/orfX was reduced 794-folds compared with the parental strain. Additionally, it was completely eliminated in mice at day 7 post infection and no obvious pathological changes were observed in the organs of mice after prime-boost immunization for 23 days. These results proved that the safety of the Lm vaccine strain remarkably increased. More importantly, the NTSNΔactA/plcB/orfX strain stimulated higher anti-Listeriolysin O (LLO) antibodies, induced significantly higher expression of IFN-γ, TNF-α, IL-17, and IL-6 than the control group, and afforded 100% protection against serovar 4b and 1/2b challenges. Taken together, our research demonstrates that the triple-genes-deletion vaccine has high safety, can elicit strong Th1 type immune response, and affords efficient cross-protection against two serovar Lm strains. It is a promising vaccine for prevention of listeriosis.

8.
Front Microbiol ; 11: 1309, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676058

RESUMEN

Listeria monocytogenes (L. monocytogenes) is a ubiquitous foodborne pathogen that comprises 14 serotypes, of which serovar 4h is a novel serotype recently reported. Serovar 4h L. monocytogenes belonging to hybrid sub-lineage II exhibit hypervirulent features. Conventional biochemical tests and widely used PCR-based serogrouping schemes could not distinguish serovar 4h strains. In this study, we developed a new multiplex PCR assay for rapid detection of serotype 4h L. monocytogenes. Three primer pairs based on the target genes, LMxysn_1095, lmo1083, and smcL, were designed. The multiplex PCR results showed that serovar 4h strains could be specifically identified from all tested strains, including various L. monocytogenes serovars, Listeria spp., and other species. The detection limits of the multiplex PCR were 291 fg/µL for genomic DNA and 5.5 × 106 CFU/mL for bacterial suspension. Furthermore, pork meat artificially contaminated with serovar 4h L. monocytogenes in a concentration of 1.8 × 103-1.8 × 100 CFU/10 g were successfully detected within 10-16 h. These results demonstrate that the multiplex PCR with high specificity and sensitivity is applicable for the rapid detection of L. monocytogenes serotype 4h strains.

9.
Nat Commun ; 10(1): 4283, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570766

RESUMEN

The foodborne pathogen Listeria monocytogenes (Lm) is a highly heterogeneous species and currently comprises of 4 evolutionarily distinct lineages. Here, we characterize isolates from severe ovine listeriosis outbreaks that represent a hybrid sub-lineage of the major lineage II (HSL-II) and serotype 4h. HSL-II isolates are highly virulent and exhibit higher organ colonization capacities than well-characterized hypervirulent strains of Lm in an orogastric mouse infection model. The isolates harbour both the Lm Pathogenicity Island (LIPI)-1 and a truncated LIPI-2 locus, encoding sphingomyelinase (SmcL), a virulence factor required for invasion and bacterial translocation from the gut, and other non-contiguous chromosomal segments from another pathogenic species, L. ivanovii. HSL-II isolates exhibit a unique wall teichoic acid (WTA) structure essential for resistance to antimicrobial peptides, bacterial invasion and virulence. The discovery of isolates harbouring pan-species virulence genes of the genus Listeria warrants global efforts to identify further hypervirulent lineages of Lm.


Asunto(s)
Listeria monocytogenes/genética , Listeriosis/microbiología , Animales , Células CACO-2 , Genoma Bacteriano , Genómica , Cabras/microbiología , Humanos , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/patogenicidad , Ratones , Filogenia , Porcinos/microbiología , Virulencia
10.
Microbiol Res ; 215: 148-154, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30172301

RESUMEN

Regulator factor Hfq has been widely detected among both Gram-positive and Gram-negative bacteria; however, its role in Gram-positive bacteria is less well established and varies among species. In Listeria monocytogenes (Lm), an organism able to adapt to a range of environments and live both saprobiotic and parasitic lifestyles, the role of Hfq is not fully understood. Serotype 4b Listeria monocytogenes strains associated with the majority of listeriosis outbreak, while the function of hfq in serotype 4b strains still not referenced. Here, we constructed hfq deletion and reversion mutants of serotype 4b Lm NTSN and analysed the biological characteristics both in vitro and in vivo. The deletion of hfq resulted in a growth deficiency in medium containing 4.5% ethanol or 1% Triton X-100, and the growth of the mutant was significantly reduced at 4 °C. Furthermore, the hfq deletion dramatically decreased biofilm formation in BHI medium and gastric fluid medium, and reduced the invasion and replication rate into the Caco-2BBe cells and RAW264.7 cells. However, complementation restored the wild-type phenotype. Importantly, mouse infection experiments demonstrated that hfq played a more important role in the colonisation and virulence in serotype 4b strain Lm NTSN than in the serotype 1/2a strain Lm EGDe. Taken together, these results demonstrated that hfq is a novel factor associated with biofilm formation, and plays an essential role in the stress response and pathogenisis in serotype 4b strain Lm NTSN. Our data provide the basis for further research into the function of Hfq in serotype 4b Listeria monocytogenes.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteína de Factor 1 del Huésped/fisiología , Listeria monocytogenes/metabolismo , Serogrupo , Factores de Virulencia/fisiología , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Etanol/farmacología , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Humanos , Dosificación Letal Mediana , Listeria monocytogenes/genética , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Ratones , Ratones Endogámicos BALB C , Octoxinol/farmacología , Células RAW 264.7 , Estrés Fisiológico , Virulencia/genética , Factores de Virulencia/genética
11.
PLoS One ; 13(8): e0201024, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067784

RESUMEN

Auxin response factors (ARF) are important transcription factors which mediate the transcription of auxin responsive genes by binding directly to auxin response elements (AuxREs) found in the promoter regions of these genes. To date, no information has been available about the genome-wide organization of the ARF transcription factor family in physic nut. In this study, 17 ARF genes (JcARFs) are identified in the physic nut genome. A detailed investigation into the physic nut ARF gene family is performed, including analysis of the exon-intron structure, conserved domains, conserved motifs, phylogeny, chromosomal locations, potential small RNA targets and expression profiles under various conditions. Phylogenetic analysis suggests that the 17 JcARF proteins are clustered into 6 groups, and most JcARF proteins from the physic nut reveal closer relationships with those from Arabidopsis than those from rice. Of the 17 JcARF genes, eight are predicted to be the potential targets of small RNAs; most of the genes show differential patterns of expression among four tissues (root, stem cortex, leaf, and seed); and qRT-PCR indicates that the expression of all JcARF genes is inhibited or induced in response to exogenous auxin. Expression profile analysis based on RNA-seq data shows that in leaves, 11 of the JcARF genes respond to at least one abiotic stressor (drought and/or salinity) at, as a minimum, at least one time point. Our results provide valuable information for further studies on the roles of JcARF genes in regulating physic nut's growth, development and responses to abiotic stress.


Asunto(s)
Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Cromosomas de las Plantas , Secuencia Conservada , Deshidratación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Jatropha/crecimiento & desarrollo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Especificidad de la Especie , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
12.
Cell Physiol Biochem ; 37(6): 2434-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26650545

RESUMEN

BACKGROUND/AIMS: Osteosarcoma (OS) is a primary malignant bone tumor in humans, and is notorious mainly for its distal metastases. We have recently shown that Shikonin, an effective constituent extracted from Chinese medicinal herb, inhibits OS cell invasion through suppression of matrix metalloproteinase 13 (MMP13). However, the underlying mechanisms remain unknown. METHODS: Here, we studied the levels of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2) in OS cells upon Shikonin treatment. TIPE2 levels were adapted in OS cell lines through transfection with plasmids carrying transgene or short-hairpin interference RNA (shRNA), and the effects of TIPE2 adaptation on MMP13 and cell invasiveness were evaluated by RT-qPCR, Western blot, ELISA and transwell cell migration assay, respectively. TIPE2 levels in OS specimens from patients were examined and correlated with cancer metastases and patient survival. RESULTS: We found that Shikonin dose-dependently decreased MMP13 levels, and increased TIPE2 levels in two OS cell lines, U2OS and SaOS-2. Overexpression of TIPE2 in U2OS significantly suppressed MMP13 levels and cell invasiveness. Depletion of TIPE2 in SaOS-2 cells significantly increased MMP13 levels and cell invasiveness. Moreover, TIPE2 levels in OS specimens were significantly decreased, compared to adjacent non-cancer bone tissue. Lower TIPE2 levels correlated with higher incidence of metastases and worse 5-year survival. CONCLUSION: TIPE2 mediates the suppressive effects of Shikonin on MMP13 in osteosarcoma cells, and TIPE2 may be a novel therapeutic target for OS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Metaloproteinasa 13 de la Matriz/metabolismo , Naftoquinonas/farmacología , Osteosarcoma/patología , Adolescente , Línea Celular Tumoral , Niño , Femenino , Humanos , Osteosarcoma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...