Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401314, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877663

RESUMEN

Organic anodes have emerged as a promising energy storage medium in proton ion batteries (PrIBs) due to their ability to reversibly accommodate non-metallic proton ions. Nevertheless, the currently available organic electrodes often encounter dissolution issues, leading to a decrease in long-cycle stability. In addition, the inherent potential of the organic anode is generally relatively high, resulting in low cell voltage of assembled PrIBs (<1.0 V). To address these challenges, a novel long-period stable, low redox potential biphenylzine derivative, [2,2'-biphenazine]-7,7'-tetraol (BPZT) is explored, from the perspective of molecular symmetry and solubility, in conjunction with the effect of the molecular frontier orbital energy levels on its redox potential. Specifically, BPZT exhibited a low potential of 0.29 V (vs SHE) and is virtually insoluble in 2 m H2SO4 electrolyte during cycling. When paired with MnO2@GF or PbO2 cathodes, the resulting PrIBs achieve cell voltages of 1.07 V or 1.44 V, respectively, and maintain a high capacity retention of 90% over 20000 cycles. Additionally, these full batteries can operate stably at a high mass loading of 10 mgBPZT cm-2, highlighting their potential toward long-term energy storage applications.

2.
Angew Chem Int Ed Engl ; : e202403671, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887161

RESUMEN

Electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) to valuable liquid fuels, such as formic acid/formate (HCOOH/HCOO-) is a promising strategy for carbon neutrality. Enhancing CO-2RR activity while retaining high selectivity is critical for commercialization. To address this, we developed metal-doped bismuth (Bi) nanosheets via a facile hydrolysis method. These doped nanosheets efficiently generated high-purity HCOOH using a porous solid electrolyte (PSE) layer. Among the evaluated metal-doped Bi catalysts, Co-doped Bi demonstrated improved CO2RR performance compared to pristine Bi, achieving ~90% HCOO- selectivity and boosted activity with a low overpotential of ~1.0 V at a current density of 200 mA cm-2. In a solid electrolyte reactor, Co-doped Bi maintained HCOOH Faradaic efficiency of ~72% after a 100-hour operation under a current density of 100 mA cm-2, generating 0.1 M HCOOH at 3.2 V. Density functional theory (DFT) results revealed that Co-doped Bi required a lower applied potential for HCOOH generation from CO2, due to stronger binding energy to the key intermediates OCHO* compared to pure Bi. This study shows that metal doping in Bi nanosheets modifies the chemical composition, element distribution, and morphology, improving CO2RR catalytic activity performance by tuning surface adsorption affinity and reactivity.

3.
Nature ; 618(7967): 959-966, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37380692

RESUMEN

Electrochemical carbon-capture technologies, with renewable electricity as the energy input, are promising for carbon management but still suffer from low capture rates, oxygen sensitivity or system complexity1-6. Here we demonstrate a continuous electrochemical carbon-capture design by coupling oxygen/water (O2/H2O) redox couple with a modular solid-electrolyte reactor7. By performing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) redox electrolysis, our device can efficiently absorb dilute carbon dioxide (CO2) molecules at the high-alkaline cathode-membrane interface to form carbonate ions, followed by a neutralization process through the proton flux from the anode to continuously output a high-purity (>99%) CO2 stream from the middle solid-electrolyte layer. No chemical inputs were needed nor side products generated during the whole carbon absorption/release process. High carbon-capture rates (440 mA cm-2, 0.137 mmolCO2 min-1 cm-2 or 86.7 kgCO2 day-1 m-2), high Faradaic efficiencies (>90% based on carbonate), high carbon-removal efficiency (>98%) in simulated flue gas and low energy consumption (starting from about 150 kJ per molCO2) were demonstrated in our carbon-capture solid-electrolyte reactor, suggesting promising practical applications.

4.
Small ; 19(39): e2302650, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37264736

RESUMEN

Metallic zinc (Zn) is a highly promising anode material for aqueous energy storage systems due to its low redox potential, high theoretical capacity, and low cost. However, rampant dendrites/by-products and torpid Zn2+ transfer kinetics at electrode/electrolyte interface severely threaten the cycling stability, which deteriorate the electrochemical performance of Zn-ion batteries. Herein, an interfacial engineering strategy to construct alkaline earth fluoride modified metal Zn electrodes with long lifespan and high capacity retention is reported. The compact fluoride layer is revealed to guide uniform Zn stripping/plating and accelerate the transfer/diffusion of Zn2+ via Maxwell-Wagner polarization. A series of in situ and ex situ spectroscopic studies verified that the fluoride layer can guide uniform Zn stripping/plating. Electrochemical kinetics analyses reveal that positive effect on the removal of Zn2+ solvation sheath provided by fluoride layer. Meanwhile, this fluoride coating layer can act as a barrier between the Zn electrode and electrolyte, providing a high electrode overpotential toward hydrogen evolution reaction to hold back H2 evolution. Consequently, the fluoride-modified Zn anode exhibited a capacity retention of 88.2% after 4000 cycles under10 A g-1 . This work opens up a new path to interface engineering for propelling the exploration of advanced rechargeable aqueous Zn-ion batteries.

5.
Sci China Life Sci ; 65(7): 1445-1455, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34939159

RESUMEN

Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes. The construction of the large, gigabase (Gb)-sized genomes of higher organisms will deepen our understanding of genetic blueprints significantly. But for the synthesis and assembly of such large-scale genomes, the development of new or expanded methods is required. In this study, we develop an efficient pipeline for the construction of large DNA fragments sized 100 kilobases (kb) or above from scratches and describe an efficient method for "scar-free" engineering of the assembled sequences. Our method, therefore, should provide a standard framework for producing long DNA molecules, which are critical materials for synthetic genomics and metabolic engineering.


Asunto(s)
ADN , Ingeniería Metabólica , ADN/genética , ADN/metabolismo , Genoma , Genómica/métodos
6.
Nanomaterials (Basel) ; 8(6)2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921750

RESUMEN

Slow and controlled release systems for drugs have attracted increasing interest recently. A highly efficient metal-organic gel (MOGs) drug delivery carrier, i.e., MIL-100(Al) gel, has been fabricated by a facile, low cost, and environmentally friendly one-pot process. The unique structure of MIL-100(Al) gels has led to a high loading efficiency (620 mg/g) towards doxorubicin hydrochloride (DOX) as a kind of anticancer drug. DOX-loaded MOGs exhibited high stability under physiological conditions and sustained release capacity of DOX for up to three days (under acidic environments). They further showed sustained drug release behavior and excellent antitumor effects in in vitro experiments on HeLa cells, in contrast with the extremely low biotoxicity of MOGs. Our work provides a promising way for anticancer therapy by utilizing this MOGs-based drug delivery system as an efficient and safe vehicle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...