Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-39089065

RESUMEN

Ainsliaea fragrans Champ, a strong heat-clearing and detoxifying traditional Chinese medicine, has been effectively used for treating chronic cervicitis, endometritis, pelvic inflammatory diseases, and other conditions caused by damp heat. It shows a good effect in the treatment of cervicitis and has broad clinical application prospects. Nevertheless, there is no comprehensive study on its in vivo and in vitro chemical analysis. UHPLC-QTOF-MS/MS combined with the non-targeted characteristic filter analysis were used to conjecture and characterize the chemical components and in vivo metabolites of rats following oral administration of Ainsliaea fragrans Champ. In this study, A total of 85 compounds were identified in Ainsliaea fragrans Champ, including 29 flavonoids, 14 sesquiterpenoids, 25 chlorogenic acids, and 17 other compounds. In the plasma of rats after administration of Ainsliaea fragrans Champ, 160 compounds were deduced (19 prototype compounds and 141 metabolites). The 141 metabolites consist of 50 flavonoids, 80 phenolic acids and 11 Chlorogenic acids. The related metabolic pathways mainly involved demethylation, reduction, sulfonation, decarboxylation, hydroxylation, methylation, and glucuronide conjunction. In summary, the chemical components and metabolites of Ainsliaea fragrans Champ were comprehensively identified by using a rapid and accurate analysis method, which laid a foundation for dissecting its bioactive substances. In addition, it provides a scientific basis for the in-depth study of the material basis of Ainsliaea fragrans Champ efficacy and theoretical support for illustrating the mechanism of medical action and its clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Flavonoides , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Administración Oral , Flavonoides/sangre , Flavonoides/química , Femenino , Ácido Clorogénico/sangre , Ácido Clorogénico/química , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/metabolismo , Asteraceae/química , Hidroxibenzoatos/sangre , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismo
3.
J Ethnopharmacol ; 334: 118515, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972530

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In Mongolian medicine, Loulu flower (LLF), the dried inflorescence of Rhaponticum uniflorum (L.) DC. from the Compositae family, has been used to clear heat and relieve toxicity for millennia, particularly in the treatment of pneumonia. AIM OF THIS STUDY: To reveal the effects of LLF on mice with lipopolysaccharide (LPS)-stimulated acute lung injury (ALI) and elucidate the underlying mechanisms. MATERIALS AND METHODS: ALI was established in BALB/c mice via nasal drops administration of LPS (5 mg/kg). The mice were then orally administrated with various doses of LLF extracts and the positive drug dexamethasone (DEX, 5 mg/kg), once daily for seven consecutive days. Last day, after being stimulated with LPS for 6h, the mice were closed dislocation of cervical vertebra, the serum, bronchus alveolar lavage fluid (BALF) and lung tissue were put into the EP tube and stored at -80 °C for further analysis. The changes of histopathology were tested by hematoxylin and eosin stain (H&E), the levels of, IL-1ß, IL-18, TNF-α and IL-4 in BALF and serum were measured by ELISA. The pathways related to the treatment of ALI were predicted by network pharmacology. The expression levels of TLR4/NF-κB and NLRP3 signaling pathway-associated proteins, COX-2 and ERK were tested by western blotting. The levels of P65 and NLRP3 in lung tissues were determined by immunofluorescence analysis. RESULTS: LLF total extract and the extract parts could alleviate the inflammatory cell infiltration, thicken the alveolar walls in lung tissues, reduce the levels of IL-18, IL-1ß in BALF, the TNF-α in both BALF and serum, meantime enhance the level of IL-4 in BALF and serum in mice with LPS-induced ALI. Our network pharmacology and comprehensive gene ontology analyses revealed the active constituents of LLF and the pathways, including TLR4/NF-κB, NLRP3 and MAPK signaling pathways, which play significant roles in ALI. Furthermore, both the total extract and its extraction portions suppressed the expressions of proteins related with the COX-2, p-ERK and TLR4/NF-κB signaling pathway (TLR4, p-IκB, p-p65), as well as the NLRP3 signaling pathway (NLRP3, cleaved caspase-1, caspase-1, IL-1ß). CONCLUSION: LLF could improve the pathological changes and reducing inflammatory reactions in mice induced by LPS. The mechanism may be related to the modulation of the TLR4/NLRP3 signaling pathways.


Asunto(s)
Lesión Pulmonar Aguda , Flores , Lipopolisacáridos , Pulmón , Ratones Endogámicos BALB C , Extractos Vegetales , Animales , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lipopolisacáridos/toxicidad , Flores/química , Extractos Vegetales/farmacología , Masculino , Ratones , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Antiinflamatorios/farmacología , Etanol/química , Citocinas/metabolismo , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Líquido del Lavado Bronquioalveolar , Solventes/química , Transducción de Señal/efectos de los fármacos
4.
Org Biomol Chem ; 22(30): 6080-6084, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39034644

RESUMEN

An efficient and environmentally friendly electrochemical oxidative selective halogenation of pyrazolones has been developed under conditions free of metals, external oxidants, and external supporting electrolytes. The reaction demonstrates good functional group tolerance and maintains high efficiency in large-scale synthesis, yielding moderate to excellent yields of the desired 4-halopyrazolones. This method provides a green and convenient route for the direct installation of a halogen moiety into bioactive pyrazolone derivatives, which can be utilized in a myriad of applications.

5.
J Chromatogr A ; 1730: 465094, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889584

RESUMEN

In this study, the collision induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation pathway of chemical components in rhubarb was wholly explored using 34 standards by UHPLC-QTOF-MS/MS in negative ion mode. In consequently, the diagnostic product ions for speedy screening and categorization of chemical components in rhubarb were ascertained based on their MS/MS splitting decomposition patterns and intensity analysis. According to these findings, a fresh two-step data mining strategy had set up. The initial key step involves the use of characteristic product ions and neutral loss to screen for different types of substituents and basic skeletons of compounds. The subsequent key step is to screen and classify different types of compounds based on their characteristic product ions. This method can be utilized for rapid research, classification, and identification of compounds in rhubarb. A total of 356 compounds were rapidly identified or tentatively characterized in three rhubarb species extracts, including 150 acylglucoside, 125 anthraquinone, 65 flavanols and 15 other compounds. This study manifests that the analytical strategy is feasible for the analysis of complex natural products in rhubarb.


Asunto(s)
Antraquinonas , Rheum , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Rheum/química , Espectrometría de Masas en Tándem/métodos , Antraquinonas/química , Antraquinonas/análisis , Extractos Vegetales/química , Extractos Vegetales/análisis , Glucósidos/análisis , Glucósidos/química
6.
Front Immunol ; 15: 1412022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881898

RESUMEN

Abdominal aortic aneurysm (AAA) is a degenerative disease characterized by local abnormal dilation of the aorta accompanied by vascular smooth muscle cell (VSMC) dysfunction and chronic inflammation. VSMC dedifferentiation, transdifferentiation, and increased expression of matrix metalloproteinases (MMPs) are essential causes of AAA formation. Previous studies from us and others have shown that Anemoside B4 (AB4), a saponin from Pulsatilla chinensis, has anti-inflammatory, anti-tumor, and regulatory effects on VSMC dedifferentiation. The current study aimed to investigate whether AB4 inhibits AAA development and its underlying mechanisms. By using an Ang II induced AAA model in vivo and cholesterol loading mediated VSMC to macrophage transdifferentiation model in vitro, our study demonstrated that AB4 could attenuate AAA pathogenesis, prevent VSMC dedifferentiation and transdifferentiation to macrophage-like cells, decrease vascular inflammation, and suppress MMP expression and activity. Furthermore, KLF4 overexpression attenuated the effects of AB4 on VSMC to macrophage-like cell transition and VSMC inflammation in vitro. In conclusion, AB4 protects against AAA formation in mice by inhibiting KLF4 mediated VSMC transdifferentiation and inflammation. Our study provides the first proof of concept of using AB4 for AAA management.


Asunto(s)
Aneurisma de la Aorta Abdominal , Transdiferenciación Celular , Inflamación , Factor 4 Similar a Kruppel , Miocitos del Músculo Liso , Saponinas , Animales , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/inducido químicamente , Transdiferenciación Celular/efectos de los fármacos , Factor 4 Similar a Kruppel/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Inflamación/metabolismo , Saponinas/farmacología , Modelos Animales de Enfermedad , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Angiotensina II/farmacología , Humanos
7.
Fitoterapia ; 176: 106010, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740341

RESUMEN

Flowers of Hosta plantaginea (H. plantaginea), a widely utilized medicinal herb in Mongolian medicine, holds a significant historical background in terms of its medicinal applications. This herb is renowned for its ability to clear heat and detoxify the body, alleviate cough, and provide relief to the throat. However, the active ingredients and the potential mechanism of action remain ambiguity. The objective of this study was to conduct a comprehensive analysis of the efficacy of H. plantaginea in treating pneumonia, identify its active ingredients and unveil the pharmacological mechanism in the treatment of pneumonia. In vivo experiments demonstrate the plant's anti-pneumonia properties, while mass spectrometry analysis identifies 62 chemicals, with 14 absorbed into the bloodstream. Network pharmacology and Venn analysis reveal 195 targets of 52 active ingredients, with 49 gene targets common to H. plantaginea and pneumonia. Protein-protein interaction (PPI) network construction and enrichment analysis highlight the key targets and pathways such as AKT, EGFR, IL-17. Western blotting confirms downregulation of these pathways, indicating the anti-inflammatory effects of H. plantaginea in treating acute lung injury. Our findings showed that the treatment of ALI with the H. plantaginea exerts its anti-inflammatory effects through multiple components, targets, and pathways. This study established a solid experimental foundation for investigating the various components, targets, and pathways involved in the treatment of pneumonia using H. plantaginea. It offers valuable insights from multiple perspectives and can serve as a reference for the clinical application of this plant in pneumonia treatment.


Asunto(s)
Flores , Farmacología en Red , Fitoquímicos , Neumonía , Animales , Flores/química , Neumonía/tratamiento farmacológico , Ratones , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Hosta , Antiinflamatorios/farmacología , Mapas de Interacción de Proteínas , Masculino , Plantas Medicinales/química , Medicina Tradicional Mongoliana , Lesión Pulmonar Aguda/tratamiento farmacológico
8.
J Med Chem ; 67(9): 7569-7584, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690687

RESUMEN

PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 µM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.


Asunto(s)
Hipoglucemiantes , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteolisis , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Descubrimiento de Drogas , Células Hep G2 , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2818-2827, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812181

RESUMEN

This study aims to explore the potential metabolic pathways and targets of Puerariae Thomsonii Radix in the clinical treatment of mild dyslipidemia. UPLC-Q-TOF-MS and EASY-nLC-timsTOF-Pro2 were employed to perform metabolomic and proteomic analyses of the plasma samples collected from the patients with mild dyslipidemia at baseline and after 12 weeks of treatment with Puerariae Thomsonii Radix. The multivariate statistical analysis was carried out for comparison between groups, and the correlation analysis was performed for the metabolites and proteins closely related to mild dyslipidemia with the blood lipid indexes. The possible pathways and targets for mitigating mild dyslipidemia were screened out by the Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. The results showed that 56 differential metabolites and 78 differential proteins in the plasma of patients were associated with Puerariae Thomsonii Radix treatment. In addition, changes were detected for the proteins or metabolites(ApoB-100, 9,10-DHOME, GAPDH, PGK1, PGAM1, ENO1, etc.) involved in lipoprotein, lipid, and glucose metabolism and the proteins or metabolites(oxidized phospholipid, PLA2G7, LTA4H, etc.) related to inflammation and oxidative stress. Puerariae Thomsonii Radix may down-regulate the overexpression of ApoB-100, activate the peroxisome proliferator-activated receptor α/γ(PPARα/γ), promote the catabolism of fat and glycerol, and alleviate the oxidative stress mediated by oxidized phospholipids and leukotriene B4(LTB4) in the treatment of mild dyslipidemia.


Asunto(s)
Medicamentos Herbarios Chinos , Dislipidemias , Metabolómica , Proteómica , Pueraria , Humanos , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Pueraria/química , Masculino , Femenino , Persona de Mediana Edad , Adulto
10.
RSC Adv ; 14(18): 12556-12560, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38638814

RESUMEN

Selenium-containing compounds are important scaffolds owing to their value in medicinal chemistry, biochemistry and material chemistry. Herein, we report an electrochemical approach to access seleno-benzazepines through an oxidative radical cascade cyclization of dienes with diselenides under metal-free, external oxidant-free and base-free conditions. In a simple undivided cell, various dienes and diselenides were suitable for this transformation, generating the desired products in up to 84% yields. This method provides a green and convenient route for the synthesis of valuable selenium-containing seven-membered N-heterocycles from simple starting materials.

11.
Appl Microbiol Biotechnol ; 108(1): 292, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592514

RESUMEN

Pulchinenoside B4, a natural saponin monomer from the Pulsatilla plant, plays an important role as an immunomodulator in the treatment of acute inflammation. Oral ulcer (OU) is a common ulcerative injury disease that occurs in the oral mucosa, including mucosal ulceration and abnormalities of lips and tongue. A close correlation exists between gut microbiota and circulating metabolites in patients with OU. However, the correlation between gut microbiota and serum metabolomics is not clear. Therefore, this study aimed to explore the changes in gut microbiota and metabolites in OU. The 16S ribosomal RNA (16S rRNA) gene sequencing was used to detect the changes in the composition of gut microbiota in OU rat model. Moreover, the endogenous small metabolites were explored by collecting the non-targeted serum metabolomics data. A total of 34 OU-related biomarkers were identified, mainly related to fatty acid metabolism and inflammatory pathways. The administration of B4 effectively reduced the occurrence of OU and restored the levels of multiple endogenous biomarkers and key gut microbial species to the normal level. This study demonstrated that the gut microbiota and metabolites were altered in the OU rat model, which were significantly restored to the normal level by B4, thereby showing good application prospects in the treatment of OU. KEY POINTS: • The first investigating the correlation between OU and gut microbiota. • A close correlation between metabolites and gut microbiota in OU disease was successfully identified. • Pulchinenoside B4 ameliorates oral ulcers in rats by modulating gut microbiota and metabolites.


Asunto(s)
Microbioma Gastrointestinal , Úlceras Bucales , Humanos , Animales , Ratas , ARN Ribosómico 16S/genética , Mucosa Bucal , Biomarcadores
12.
ACS Appl Mater Interfaces ; 16(15): 19205-19213, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591860

RESUMEN

An artificial nociceptor, as a critical and special bionic receptor, plays a key role in a bioelectronic device that detects stimuli and provides warnings. However, fully exploiting bioelectronic applications remains a major challenge due to the lack of the methods of implementing basic nociceptor functions and nociceptive blockade in a single device. In this work, we developed a Pt/LiSiOx/TiN artificial nociceptor. It had excellent stability under the 104 endurance test with pulse stimuli and exhibited a significant threshold current of 1 mA with 1 V pulse stimuli. Other functions such as relaxation, inadaptation, and sensitization were all realized in a single device. Also, the pain blockade function was first achieved in this nociceptor with over a 25% blocking degree, suggesting a self-protection function. More importantly, an obvious depression was activated by a stimulus over 1.6 V due to the cooperative effects of both lithium ions and oxygen ions in LiSiOx and the dramatic accumulation of Joule heat. The conducting channel ruptured partially under sequential potentiation, thus achieving nociceptive blockade, besides basic functions in one single nociceptor, which was rarely reported. These results provided important guidelines for constructing high-performance memristor-based artificial nociceptors and opened up an alternative approach to the realization of bioelectronic systems for artificial intelligence.


Asunto(s)
Inteligencia Artificial , Nociceptores , Humanos , Nociceptores/fisiología , Dolor , Biónica , Iones/farmacología
13.
Acta Pharm Sin B ; 14(4): 1661-1676, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572101

RESUMEN

Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by changes in kidney structure and function. The natural product rosmarinic acid (RA) has demonstrated therapeutic effects, including anti-inflammation and anti-oxidative-stress, in renal damage or dysfunction. In this study, we characterized the heterogeneity of the cellular response in kidneys to DN-induced injury and RA treatment at single cell levels. Our results demonstrated that RA significantly alleviated renal tubular epithelial injury, particularly in the proximal tubular S1 segment and on glomerular epithelial cells known as podocytes, while attenuating the inflammatory response of macrophages, oxidative stress, and cytotoxicity of natural killer cells. These findings provide a comprehensive understanding of the mechanisms by which RA alleviates kidney damage, oxidative stress, and inflammation, offering valuable guidance for the clinical application of RA in the treatment of DN.

14.
ACS Chem Neurosci ; 15(10): 2042-2057, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38656184

RESUMEN

Based on the neuroprotection of butylphthalide and donepezil, a series of indanone/benzofuranone and piperidine hybrids were designed and synthesized for assessment of their neuroprotective activities, aiming to enhance the bioavailability and therapeutic efficacy of natural phthalide analogues. Within this study, it was observed that most indanone derivatives bearing 1-methylpiperidine in the tail segment demonstrated superior neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced rat primary neuronal cell injury model in vitro compared to benzofuranone compounds. Among the synthesized compounds, 11 (4, 14, 15, 22, 26, 35, 36, 37, 48, 49, and 52) displayed robust cell viabilities in the OGD/R model, along with favorable blood-brain barrier permeability as confirmed by the parallel artificial membrane permeability assay. Notably, compound 4 showed significant neuronal cell viabilities within the concentration range of 3.125 to 100 µM, without inducing cytotoxicity. Further results from in vivo middle cerebral artery occlusion/R experiments revealed that 4 effectively ameliorated ischemia-reperfusion injury, reducing the infarct volume to 18.45% at a dose of 40 mg/kg. This outcome suggested a superior neuroprotective effect compared to edaravone at 20 mg/kg, further highlighting the potential therapeutic efficacy of compound 4 in addressing neurological disorders.


Asunto(s)
Benzofuranos , Indanos , Fármacos Neuroprotectores , Piperidinas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Piperidinas/farmacología , Piperidinas/síntesis química , Piperidinas/química , Indanos/farmacología , Indanos/síntesis química , Indanos/química , Benzofuranos/farmacología , Benzofuranos/síntesis química , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Supervivencia Celular/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
15.
J Ethnopharmacol ; 328: 118082, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38522625

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY: The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS: High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS: A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1ß, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS: LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.


Asunto(s)
Medicina Tradicional Tibetana , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Ratones , Animales , Lipopolisacáridos/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón , Transducción de Señal
16.
Food Chem ; 445: 138648, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354639

RESUMEN

This research investigates the formation of amyloid fibrils using enzymatically hydrolyzed peptides from gluten, including its components glutenin and gliadin. After completing the fibrillation incubation, the gluten group demonstrated the most significant average particle size (908.67 nm) and conversion ratio (57.64 %), with a 19.21 % increase in thioflavin T fluorescence intensity due to self-assembly. The results indicated increased levels of ß-sheet structures after fibrillation. The gliadin group exhibited the highest zeta potential (∼13 mV) and surface hydrophobicity (H0 = 809.70). Around 71.15 % of predicted amyloidogenic regions within gliadin peptides showed heightened hydrophobicity. These findings emphasize the collaborative influence of both glutenin and gliadin in the formation of gluten fibrils, influenced by hydrogen bonding, hydrophobic, and electrostatic interactions. They also highlight the crucial role played by gliadin with amyloidogenic fragments such as ILQQIL and SLVLQTL, aiming to provide a theoretical basis for understanding the utilization of gluten proteins.


Asunto(s)
Amiloide , Gliadina , Amiloide/metabolismo , Gliadina/química , Péptidos/química , Glútenes/química , Conformación Proteica en Lámina beta , Fragmentos de Péptidos/química
17.
Nat Commun ; 15(1): 1132, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326298

RESUMEN

The exponential growth of various complex images is putting tremendous pressure on storage systems. Here, we propose a memristor-based storage system with an integrated near-storage in-memory computing-based convolutional autoencoder compression network to boost the energy efficiency and speed of the image compression/retrieval and improve the storage density. We adopt the 4-bit memristor arrays to experimentally demonstrate the functions of the system. We propose a step-by-step quantization aware training scheme and an equivalent transformation for transpose convolution to improve the system performance. The system exhibits a high (>33 dB) peak signal-to-noise ratio in the compression and decompression of the ImageNet and Kodak24 datasets. Benchmark comparison results show that the 4-bit memristor-based storage system could reduce the latency and energy consumption by over 20×/5.6× and 180×/91×, respectively, compared with the server-grade central processing unit-based/the graphics processing unit-based processing system, and improve the storage density by more than 3 times.

18.
Nat Prod Res ; : 1-13, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189427

RESUMEN

Bioactivity-guided purification obtained polysaccharide BP-S1 from seeds of Brucea javanica. The results showed that BP-S1 was a homogenous polysaccharide with molecular weight of 45.7 kDa, mainly composed of arabinose and glucose in the ratio of 1.0:1.0 and the backbone of BP-S1 was deduced to be →3,4)-α-Glup-(1→ with branches of →2)-α-Arap-(1→and α-Arap-(1→, and the possible repetitive units were speculated according to result of methylation and 2D-NMR. Moreover, BP-S1 is a periodic rope-like structure. Functional analysis revealed that BP-S1 inhibited complement activation on the classic and alternative pathways with values of CH50 0.073 ± 0.012 mg/mL and AP50 0.097 ± 0.004 mg/mL, respectively. In mechanism study, using complement component depleted-sera methods indicated that BP-S1 selectively interacted with C3 and C4 components.

19.
Arch Pharm (Weinheim) ; 357(5): e2300603, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290060

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurological disease, and the multitarget directed ligand (MTDL) strategy may be an effective approach to delay its progression. Based on this strategy, 27 derivatives of l-tryptophan, 3a-1-3d-1, were designed, synthesized, and evaluated for their biological activity. Among them, IC50 (inhibitor concentration resulting in 50% inhibitory activity) values of compounds 3a-18 and 3b-1 were 0.58 and 0.44 µM for human serum butyrylcholinesterase (hBuChE), respectively, and both of them exhibited more than 30-fold selectivity for human serum acetylcholinesterase. Enzyme kinetics studies showed that these two compounds were mixed inhibitors of hBuChE. In addition, these two derivatives possessed extraordinary antioxidant activity in OH radical scavenging and oxygen radical absorption capacity fluorescein assays. Meanwhile, these compounds could also prevent ß-amyloid (Aß) self-aggregation and possessed low toxicity on PC12 and AML12 cells. Molecular modeling studies revealed that these two compounds could interact with the choline binding site, acetyl binding site, and peripheral anionic site to exert submicromolar BuChE inhibitory activity. In the vitro blood-brain barrier permeation assay, compounds 3a-18 and 3b-1 showed enough blood-brain barrier permeability. In drug-likeness prediction, compounds 3a-18 and 3b-1 showed good gastrointestinal absorption and a low risk of human ether-a-go-go-related gene toxicity. Therefore, compounds 3a-18 and 3b-1 are potential multitarget anti-AD lead compounds, which could work as powerful antioxidants with submicromolar selective inhibitory activity for hBuChE as well as prevent Aß self-aggregation.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Antioxidantes , Barrera Hematoencefálica , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Diseño de Fármacos , Triptófano , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad , Barrera Hematoencefálica/metabolismo , Butirilcolinesterasa/metabolismo , Animales , Triptófano/farmacología , Triptófano/química , Triptófano/análogos & derivados , Triptófano/síntesis química , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ratas , Acetilcolinesterasa/metabolismo , Estructura Molecular , Células PC12 , Relación Dosis-Respuesta a Droga , Modelos Moleculares
20.
Nat Prod Res ; : 1-6, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217490

RESUMEN

A novel alkaloid with a hexa-tetra-hexa-cyclic skeleton, Bi-4-methoxycarbonyl-2-quinolone (1), was discovered during the investigation of Brucea javanica. Additionally, six known alkaloids (2-7) were also found. The chemical structures of these compounds were identified using HRESIMS and 1D and 2D NMR spectroscopic analysis. Additionally, the absolute configuration of the new compound 1 was determined through X-ray single crystal diffraction. Compound 1 exhibited significant anti-inflammatory activity in RAW264.7 cells and demonstrated promising anti-cancer effects in Lewis cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA