Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Pediatr Neurol ; 158: 17-25, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38936258

RESUMEN

BACKGROUND: Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) is associated to BPTF gene haploinsufficiency. Epilepsy was not included in the initial descriptions of NEDDFL, but emerging evidence indicates that epileptic seizures occur in some affected individuals. This study aims to investigate the electroclinical epilepsy features in individuals with NEDDFL. METHODS: We enrolled individuals with BPTF-related seizures or interictal epileptiform discharges (IEDs) on electroencephalography (EEG). Demographic, clinical, genetic, raw EEG, and neuroimaging data as well as response to antiseizure medication were assessed. RESULTS: We studied 11 individuals with a null variant in BPTF, including five previously unpublished ones. Median age at last observation was 9 years (range: 4 to 43 years). Eight individuals had epilepsy, one had a single unprovoked seizure, and two showed IEDs only. Key features included (1) early childhood epilepsy onset (median 4 years, range: 10 months to 7 years), (2) well-organized EEG background (all cases) and brief bursts of spikes and slow waves (50% of individuals), and (3) developmental delay preceding seizure onset. Spectrum of epilepsy severity varied from drug-resistant epilepsy (27%) to isolated IEDs without seizures (18%). Levetiracetam was widely used and reduced seizure frequency in 67% of the cases. CONCLUSIONS: Our study provides the first characterization of BPTF-related epilepsy. Early-childhood-onset epilepsy occurs in 19% of subjects, all presenting with a well-organized EEG background associated with generalized interictal epileptiform abnormalities in half of these cases. Drug resistance is rare.

2.
Mol Genet Metab ; 140(3): 107694, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708665

RESUMEN

Creatine transporter deficiency (CTD), caused by pathogenic variants in SLC6A8, is the second most common cause of X-linked intellectual disability. Symptoms include intellectual disability, epilepsy, and behavioral disorders and are caused by reduced cerebral creatine levels. Targeted treatment with oral supplementation is available, however the treatment efficacy is still being investigated. There are clinical and theoretical indications that heterozygous females with CTD respond better to supplementation treatment than hemizygous males. Unfortunately, heterozygous females with CTD often have more subtle and uncharacteristic clinical and biochemical phenotypes, rendering diagnosis more difficult. We report a new female case who presented with learning disabilities and seizures. After determining the diagnosis with molecular genetic testing confirmed by proton magnetic resonance spectroscopy (1H-MRS), the patient was treated with supplementation treatment including creatine, arginine, and glycine. After 28 months of treatment, the patient showed prominent clinical improvement and increased creatine levels in the brain. Furthermore, we provide a review of the 32 female cases reported in the current literature including a description of phenotypes, genotypes, diagnostic approaches, and effects of supplementation treatment. Based on this, we find that supplementation treatment should be tested in heterozygous female patients with CTD, and a prospective treatment underlines the importance of diagnosing these patients. The diagnosis should be suspected in a broad clinical spectrum of female patients and can only be made by molecular genetic testing. 1H-MRS of cerebral creatine levels is essential for establishing the diagnosis in females, and especially valuable when assessing variants of unknown significance.


Asunto(s)
Encefalopatías Metabólicas Innatas , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Masculino , Humanos , Femenino , Discapacidad Intelectual/genética , Creatina , Encefalopatías Metabólicas Innatas/diagnóstico , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas del Tejido Nervioso
4.
Ann Neurol ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606373

RESUMEN

OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.

5.
Front Neurosci ; 17: 1219262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502687

RESUMEN

Introduction: Phenotypic spectrum of SLC6A1-related neurodevelopmental disorders (SLC6A1-NDD) includes intellectual disability (ID), autistic spectrum disorders (ASD), epilepsy, developmental delay, beginning from early infancy or after seizure onset, and other neurological features such as hypotonia and movement disorders. Data on familial phenotypic heterogeneity have been rarely reported, thus in our study we aimed to investigate intrafamilial phenotypic variability in families with SLC6A1 variants. Methods: We collected clinical, laboratory and genetic data on 39 individuals, including 17 probands, belonging to 13 families harboring inherited variants of SLC6A1. Data were collected through an international network of Epilepsy and Genetic Centers. Results: Main clinical findings in the whole cohort of 39 subjects were: (a) epilepsy, mainly presenting with generalized seizures, reported in 71% of probands and 36% of siblings or first/second-degree relatives. Within a family, the same epilepsy type (generalized or focal) was observed; (b) ID reported in 100% and in 13% of probands and siblings or first/second-degree relatives, respectively; (c) learning disabilities detected in 28% of the SLC6A1 carriers, all of them were relatives of a proband; (d) around 51% of the whole cohort presented with psychiatric symptoms or behavioral disorders, including 82% of the probands. Out of the 19 patients with psychiatric symptoms, ASD were diagnosed in 40% of them; (e) neurological findings (primarily tremor and speech difficulties) were observed 38.5% of the whole cohort, including 10 probands. Our families harbored 12 different SLC6A1 variants, one was a frameshift, two stop-gain, while the remaining were missense. No genotype-phenotype associations were identified. Discussion: Our study showed that first-or second-degree relatives presented with a less severe phenotype, featuring mainly mild intellectual and/or learning disabilities, at variance with the probands who suffered from moderate to severe ID, generalized, sometimes intractable, epileptic seizures, behavioral and psychiatric disorders. These findings may suggest that a proportion of individuals with mild SLC6A1-NDD might be missed, in particular those with an older age where genetic testing is not performed. Further studies on intrafamilial phenotypic variability are needed to confirm our results and possibly to expand the phenotypic spectrum of these disorders and benefit genetic counseling.

6.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334838

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.


Asunto(s)
Discapacidad Intelectual , Animales , Ratones , Discapacidad Intelectual/metabolismo , Autorrenovación de las Células , Glicosilación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
7.
Neurotherapeutics ; 20(5): 1294-1304, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37278968

RESUMEN

MOGHE is defined as mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Approximately half of the patients with histopathologically confirmed MOGHE carry a brain somatic variant in the SLC35A2 gene encoding a UDP-galactose transporter. Previous research showed that D-galactose supplementation results in clinical improvement in patients with a congenital disorder of glycosylation due to germline variants in SLC35A2. We aimed to evaluate the effects of D-galactose supplementation in patients with histopathologically confirmed MOGHE, with uncontrolled seizures or cognitive impairment and epileptiform activity at the EEG after epilepsy surgery (NCT04833322). Patients were orally supplemented with D-galactose for 6 months in doses up to 1.5 g/kg/day and monitored for seizure frequency including 24-h video-EEG recording, cognition and behavioral scores, i.e., WISC, BRIEF-2, SNAP-IV, and SCQ, and quality of life measures, before and 6 months after treatment. Global response was defined by > 50% improvement of seizure frequency and/or cognition and behavior (clinical global impression of "much improved" or better). Twelve patients (aged 5-28 years) were included from three different centers. Neurosurgical tissue samples were available in all patients and revealed a brain somatic variant in SLC35A2 in six patients (non-present in the blood). After 6 months of supplementation, D-galactose was well tolerated with just two patients presenting abdominal discomfort, solved after dose spacing or reduction. There was a 50% reduction or higher of seizure frequency in 3/6 patients, with an improvement at EEG in 2/5 patients. One patient became seizure-free. An improvement of cognitive/behavioral features encompassing impulsivity (mean SNAP-IV - 3.19 [- 0.84; - 5.6]), social communication (mean SCQ - 2.08 [- 0.63; - 4.90]), and executive function (BRIEF-2 inhibit - 5.2 [- 1.23; - 9.2]) was observed. Global responder rate was 9/12 (6/6 in SLC35A2-positive). Our results suggest that supplementation with D-galactose in patients with MOGHE is safe and well tolerated and, although the efficacy data warrant larger studies, it might build a rationale for precision medicine after epilepsy surgery.


Asunto(s)
Epilepsia , Galactosa , Humanos , Medicina de Precisión , Hiperplasia , Proyectos Piloto , Calidad de Vida , Epilepsia/terapia , Convulsiones , Electroencefalografía/métodos
8.
Genet Med ; 25(9): 100894, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183800

RESUMEN

PURPOSE: The "NALCN channelosome" is an ion channel complex that consists of multiple proteins, including NALCN, UNC79, UNC80, and FAM155A. Only a small number of individuals with a neurodevelopmental syndrome have been reported with disease causing variants in NALCN and UNC80. However, no pathogenic UNC79 variants have been reported, and in vivo function of UNC79 in humans is largely unknown. METHODS: We used international gene-matching efforts to identify patients harboring ultrarare heterozygous loss-of-function UNC79 variants and no other putative responsible genes. We used genetic manipulations in Drosophila and mice to test potential causal relationships between UNC79 variants and the pathology. RESULTS: We found 6 unrelated and affected patients with UNC79 variants. Five patients presented with overlapping neurodevelopmental features, including mild to moderate intellectual disability and a mild developmental delay, whereas a single patient reportedly had normal cognitive and motor development but was diagnosed with epilepsy and autistic features. All displayed behavioral issues and 4 patients had epilepsy. Drosophila with UNC79 knocked down displayed induced seizure-like phenotype. Mice with a heterozygous loss-of-function variant have a developmental delay in body weight compared with wild type. In addition, they have impaired ability in learning and memory. CONCLUSION: Our results demonstrate that heterozygous loss-of-function UNC79 variants are associated with neurologic pathologies.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Drosophila/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de la Membrana/genética
9.
Epilepsia ; 64(8): e170-e176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37114479

RESUMEN

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Epilepsias Mioclónicas Progresivas , Mioclonía , Humanos , Niño , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas/patología , Familia , Proteínas Portadoras/genética , Proteínas Nucleares/genética
10.
Basic Res Cardiol ; 118(1): 8, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862248

RESUMEN

Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.


Asunto(s)
Miocitos Cardíacos , Transcriptoma , Animales , Ratones , Proliferación Celular , Genes Homeobox , Ploidias , Poliploidía , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Dedos de Zinc
11.
Neurology ; 100(6): e603-e615, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36307226

RESUMEN

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Canales de Potasio Éter-A-Go-Go , Niño , Humanos , Recién Nacido , Epilepsia/genética , Epilepsia Generalizada/genética , Mutación , Fenotipo , Convulsiones/genética , Canales de Potasio Éter-A-Go-Go/genética
12.
Eur J Med Genet ; 65(11): 104624, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36130690

RESUMEN

Ritscher-Schinzel syndrome (RTSCS) is a rare genetic condition characterized by peculiar craniofacial features and cerebellar and cardiovascular malformations. To date, four genes are implicated in this condition. The first two genes described were the autosomal recessive inherited gene WASHC5 associated with Ritscher-Schinzel syndrome 1 (RTSCS1), and CCDC22, an X-linked recessive gene causing Ritscher-Schinzel syndrome 2 (RTSCS2). In recent years, two other genes have been identified: VPS35L (RTSCS3) and DPYSL5 (RTSCS4). Only few patients with a molecular diagnosis of RTSCS have been reported, leaving the phenotypical spectrum and genotype-phenotype correlations ill-defined. We expand the number of genetically confirmed patients with RTSCS1 and 2; reporting three live born and three terminated pregnancies from two unrelated families. Four siblings carried compound heterozygous variants in WASHC5 while two siblings harboured a hemizygous CCDC22 variant. The most common findings in all patients were craniofacial dysmorphism, particularly macrocephaly, down slanted palpebral fissures and low set-ears. Developmental delay, intellectual disability and ataxic gait were present in all patients. One of the patients with the CCDC22 variant presented pubertas tarda. Elevation of nuchal translucency was observed in the first trimester ultrasound in three foetuses with compound heterozygous variants in WASHC5. None of the patients had epilepsy. The pre- and postnatal findings of this cohort expand the known phenotype of RTSCS1 and 2, with direct impact on postnatal outcome, management, and familial counseling.


Asunto(s)
Anomalías Craneofaciales , Síndrome de Dandy-Walker , Femenino , Humanos , Embarazo , Anomalías Múltiples , Anomalías Craneofaciales/genética , Síndrome de Dandy-Walker/genética , Defectos del Tabique Interatrial , Hidrolasas/genética , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Proteínas/genética , Síndrome
13.
Neurotherapeutics ; 19(4): 1353-1367, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35723786

RESUMEN

We assessed the frequency of pediatric monogenic epilepsies and precision therapies at a tertiary epilepsy center. We analyzed medical records of children, born in 2006-2011 and followed at the Danish Epilepsy Center from January to December 2015; 357 patients were identified, of whom 27 without epilepsy and 35 with acquired brain damage were excluded. Of the remaining 295 children, 188 were consented for study inclusion and genetic testing. At inclusion, 86/188 had a preexisting genetic diagnosis and did not undergo further genetic testing. The 102 genetically unsolved patients underwent WES, which identified a (likely) pathogenic variant in eight patients and a highly relevant variant of unknown significance (VUS) in seven additional patients. Single nucleotide polymorphism array was performed in the remaining 87 patients and revealed no (likely) pathogenic copy number variants (CNVs). Patients with a genetic diagnosis had a significantly lower median age at seizure onset and more often had febrile seizures, status epilepticus, or neurodevelopmental impairment compared to those who remained genetically unsolved. Most common epilepsies were focal or multifocal epilepsies and developmental and epileptic encephalopathies (DDEs). Fifty-three patients, with a putative genetic diagnosis, were potentially eligible for precision therapy approaches. Indeed, genetic diagnosis enabled treatment adjustment in 32/53 (60%); 30/32 (93%) patients experienced at least a 50% reduction in seizure burden while only 4/32 (12.5%) became seizure-free. In summary, a genetic diagnosis was achieved in approximately 50% of patients with non-acquired epilepsy enabling precision therapy approaches in half of the patients, a strategy that results in > 50% reduction in seizure burden, in the majority of the treated patients.


Asunto(s)
Epilepsia , Humanos , Niño , Adolescente , Epilepsia/diagnóstico , Epilepsia/genética , Pruebas Genéticas/métodos
14.
Brain ; 145(4): 1299-1309, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34633442

RESUMEN

A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1ß3δ and α4ß2δ GABAA receptors. This was accompanied by analysis of electroclinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1ß3δ and α4ß2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects, whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence and no seizure history, but has a diagnosis of autism spectrum disorder and suffers from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electroclinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor overactivity is observed in a broader range of patients with neurodevelopmental disorders, because SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, as a substantial portion of available antiseizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia Generalizada , Epilepsia , Proteínas Transportadoras de GABA en la Membrana Plasmática , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Mutación con Ganancia de Función , Humanos , Trastornos del Neurodesarrollo/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsiones/genética , Ácido gamma-Aminobutírico/metabolismo
15.
Brain ; 145(9): 2991-3009, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34431999

RESUMEN

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Asunto(s)
Epilepsia Generalizada , Síndromes Epilépticos , Discapacidad Intelectual , Canal de Sodio Activado por Voltaje NAV1.6 , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/genética , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/genética , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Pronóstico , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Bloqueadores de los Canales de Sodio/uso terapéutico
16.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
17.
Nat Commun ; 12(1): 2678, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976153

RESUMEN

Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Trastornos del Neurodesarrollo/genética , Transcriptoma/genética , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Modelos Animales de Enfermedad , Epigénesis Genética , Aseo Animal/fisiología , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Células Sf9 , Spodoptera
18.
Eur J Med Genet ; 64(7): 104246, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34020006

RESUMEN

The Ritscher-Schinzel syndrome (RTSCS) is a rare condition with craniofacial, cardiac and fossa posterior abnormalities. RTSCS is subdivided into Ritscher-Schinzel syndrome 1 (RTSCS1) caused by pathogenic variants in coiled-coil domain-containing protein 22 (CCDC22), and Ritscher-Schinzel syndrome 2 (RTSCS2) caused by pathogenic variants in WASH complex subunit 5 (WASHC5). CCDC22 is inherited in an X-linked recessive manner while WASHC5 is inherited in an autosomal recessive manner. Only 17 individuals with a molecular diagnosis are reported. In the past, the diagnosis of RTSCS was solely based on the clinical findings, and minimal diagnostic criteria has been proposed for the syndrome: Cardiac malformations (other than isolated patent ductus arteriosis), fossa posterior malformations, and certain dysmorphic features. However, those criteria are not present in all patients. We aim to further delineate the spectrum of CDCC22 associated RTSCS and present a novel patient with epileptic encephalopathy due to a presumed disease causing CCDC22 missense variant inherited from a healthy mother and grandmother. An affected maternal uncle had passed away at the age of 12 months and was thus unavailable for genetic testing. The proband and the maternal uncle had the typical facial dysmorphism associated with RTSCS, and they closely resembled previously published RTSCS2 patients with a molecular diagnosis. This suggests that RTSCS1 and RTSCS2 patients have a similar facial gestalt. We also review the literature on RTSCS, we explore potential differences and similarities between CCDC22 and W ASHC5 associated RTSCS and discuss the minimal diagnostic criteria.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Síndrome de Dandy-Walker/genética , Defectos del Tabique Interatrial/genética , Fenotipo , Proteínas/genética , Anomalías Múltiples/diagnóstico , Adolescente , Anomalías Craneofaciales/diagnóstico , Síndrome de Dandy-Walker/diagnóstico , Diagnóstico Diferencial , Defectos del Tabique Interatrial/diagnóstico , Humanos , Masculino , Mutación Missense
19.
Genet Med ; 23(2): 363-373, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33144681

RESUMEN

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Epilepsia , Trastorno del Espectro Autista/genética , Encefalopatías/genética , Epilepsia/genética , Femenino , Genes Ligados a X/genética , Humanos , Masculino , Proteínas del Tejido Nervioso , Convulsiones/genética
20.
Brain ; 143(4): 1114-1126, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293671

RESUMEN

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Asunto(s)
Apolipoproteína C-III/sangre , Discapacidades del Desarrollo/genética , N-Acetilgalactosaminiltransferasas/genética , Adolescente , Animales , Apolipoproteína C-III/genética , Niño , Preescolar , Femenino , Glicosilación , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Linaje , Ratas , Adulto Joven , Polipéptido N-Acetilgalactosaminiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...