Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nature ; 614(7949): 708-712, 2023 02.
Article En | MEDLINE | ID: mdl-36792825

The latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across diverse clades1-4. Recognized for well over a century, the causal mechanisms for LDGs remain disputed, in part because numerous putative drivers simultaneously covary with latitude1,3,5. The past provides the opportunity to disentangle LDG mechanisms because the relationships among biodiversity, latitude and possible causal factors have varied over time6-9. Here we quantify the emergence of the LDG in planktonic foraminifera at high spatiotemporal resolution over the past 40 million years, finding that a modern-style gradient arose only 15 million years ago. Spatial and temporal models suggest that LDGs for planktonic foraminifera may be controlled by the physical structure of the water column. Steepening of the latitudinal temperature gradient over 15 million years ago, associated with an increased vertical temperature gradient at low latitudes, may have enhanced niche partitioning and provided more opportunities for speciation at low latitudes. Supporting this hypothesis, we find that higher rates of low-latitude speciation steepened the diversity gradient, consistent with spatiotemporal patterns of depth partitioning by planktonic foraminifera. Extirpation of species from high latitudes also strengthened the LDG, but this effect tended to be weaker than speciation. Our results provide a step change in understanding the evolution of marine LDGs over long timescales.


Aquatic Organisms , Biodiversity , Foraminifera , Geographic Mapping , Plankton , Spatio-Temporal Analysis , Aquatic Organisms/classification , Aquatic Organisms/isolation & purification , Biological Evolution , Foraminifera/classification , Foraminifera/isolation & purification , Genetic Speciation , History, Ancient , Phylogeography , Plankton/classification , Plankton/isolation & purification , Temperature , Time Factors , Water/analysis , Hydrobiology
2.
Sci Data ; 8(1): 160, 2021 06 28.
Article En | MEDLINE | ID: mdl-34183675

Planktonic foraminifera are a major constituent of ocean floor sediments, and thus have one of the most complete fossil records of any organism. Expeditions to sample these sediments have produced large amounts of spatiotemporal occurrence records throughout the Cenozoic, but no single source exists to house these data. We have therefore created a comprehensive dataset that integrates numerous sources for spatiotemporal records of planktonic foraminifera. This new dataset, Triton, contains >500,000 records and is four times larger than the previous largest database, Neptune. To ensure comparability among data sources, we have cleaned all records using a unified set of taxonomic concepts and have converted age data to the GTS 2020 timescale. Where ages were not absolute (e.g. based on biostratigraphic or magnetostratigraphic zones), we have used generalised additive models to produce continuous estimates. This dataset is an excellent resource for macroecological and macroevolutionary studies, particularly for investigating how species responded to past climatic changes.


Foraminifera/classification , Plankton/classification , Climate Change , Fossils , Geologic Sediments
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article En | MEDLINE | ID: mdl-33903233

Abiotic niche lability reduces extinction risk by allowing species to adapt to changing environmental conditions in situ. In contrast, species with static niches must keep pace with the velocity of climate change as they track suitable habitat. The rate and frequency of niche lability have been studied on human timescales (months to decades) and geological timescales (millions of years), but lability on intermediate timescales (millennia) remains largely uninvestigated. Here, we quantified abiotic niche lability at 8-ka resolution across the last 700 ka of glacial-interglacial climate fluctuations, using the exceptionally well-known fossil record of planktonic foraminifera coupled with Atmosphere-Ocean Global Climate Model reconstructions of paleoclimate. We tracked foraminiferal niches through time along the univariate axis of mean annual temperature, measured both at the sea surface and at species' depth habitats. Species' temperature preferences were uncoupled from the global temperature regime, undermining a hypothesis of local adaptation to changing environmental conditions. Furthermore, intraspecific niches were equally similar through time, regardless of climate change magnitude on short timescales (8 ka) and across contrasts of glacial and interglacial extremes. Evolutionary trait models fitted to time series of occupied temperature values supported widespread niche stasis above randomly wandering or directional change. Ecotype explained little variation in species-level differences in niche lability after accounting for evolutionary relatedness. Together, these results suggest that warming and ocean acidification over the next hundreds to thousands of years could redistribute and reduce populations of foraminifera and other calcifying plankton, which are primary components of marine food webs and biogeochemical cycles.


Adaptation, Physiological/genetics , Biological Evolution , Climate Models , Foraminifera/physiology , Plankton/physiology , Climate Change , Ecosystem , Foraminifera/genetics , Fossils , Humans , Seawater/microbiology , Temperature
4.
PLoS One ; 11(11): e0165522, 2016.
Article En | MEDLINE | ID: mdl-27851751

Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world's oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson's evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.


Biodiversity , Foraminifera/physiology , Geologic Sediments/microbiology , Plankton/physiology , Internationality , Likelihood Functions , Oceans and Seas , Phylogeny , Quantitative Trait, Heritable , Species Specificity , Temperature
5.
Philos Trans R Soc Lond B Biol Sci ; 371(1691): 20150224, 2016 Apr 05.
Article En | MEDLINE | ID: mdl-26977064

The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)--one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56-34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment-diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG--lower richness towards the poles--developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity--e.g. richness, evenness, functional diversity--have changed over geological time. By the Late Eocene, environment-diversity relationships were much more similar to those found today.


Biodiversity , Biological Evolution , Climate Change , Foraminifera/classification , Plankton/classification , Fossils , Time Factors
...