Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(7): 074301, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563967

RESUMEN

A recent theoretical breakthrough has brought a new tool, called the localization landscape, for predicting the localization regions of vibration modes in complex or disordered systems. Here, we report on the first experiment which measures the localization landscape and demonstrates its predictive power. Holographic measurement of the static deformation under uniform load of a thin plate with complex geometry provides direct access to the landscape function. When put in vibration, this system shows modes precisely confined within the subregions delineated by the landscape function. Also the maxima of this function match the measured eigenfrequencies, while the minima of the valley network gives the frequencies at which modes become extended. This approach fully characterizes the low frequency spectrum of a complex structure from a single static measurement. It paves the way for controlling and engineering eigenmodes in any vibratory system, especially where a structural or microscopic description is not accessible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...