Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891193

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Familia , Femenino , Factores de Transcripción Forkhead/metabolismo , Heterocigoto , Humanos , Lactante , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfolinos/genética , Morfolinos/metabolismo , Linaje , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sistema Urinario/anomalías , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Secuenciación del Exoma , Xenopus
2.
Mol Genet Metab Rep ; 24: 100613, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32514400

RESUMEN

Biallelic pathogenic variants in mitochondrial aminoacyl-tRNA synthetase (mt-aaRS) PARS2 are associated with mitochondrial cytopathy. Here, we report the tenth case of an individual with biallelic PARS2 pathogenic variants, detected by exome sequencing (ES), and a literature review of ten cases of PARS2 mutations. Our patient displayed symptoms and clinical and laboratory findings similar to those reported previously with normal lactate levels. These symptoms included seizure disorder (which was managed with antiepileptics), developmental delay, and progressive cardiomyopathy which manifested at 19 years of age. The patient received a vitamin regimen including antioxidants as part of his treatment regimen. While further studies are required to conclusively establish the beneficial role of vitamin and cofactor administration on the mitochondria in PARS2-associated mitochondrial disease, these factors may have delayed the onset of cardiomyopathy.

3.
Eur J Hum Genet ; 26(9): 1272-1281, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29904177

RESUMEN

Au-Kline syndrome (AKS, OMIM 616580) is a multiple malformation syndrome, first reported in 2015, associated with intellectual disability. AKS has been associated with de novo loss-of-function variants in HNRNPK (heterogeneous ribonucleoprotein K), and to date, only four of these patients have been described in the literature. Recently, an additional patient with a missense variant in HNRNPK was also reported. These patients have striking facial dysmorphic features, including long palpebral fissures, ptosis, deeply grooved tongue, broad nose, and down-turned mouth. Patients frequently also have skeletal and connective tissue anomalies, craniosynostosis, congenital heart malformations, and renal anomalies. In this report, we describe six new patients and review the clinical information on all reported AKS patients, further delineating the phenotype of AKS. There are now a total of 9 patients with de novo loss-of-function variants in HNRNPK, one individual with a de novo missense variant in addition to 3 patients with de novo deletions of 9q21.32 that encompass HNRNPK. While there is considerable overlap between AKS and Kabuki syndrome (KS), these additional patients demonstrate that AKS does have a distinct facial gestalt and phenotype that can be differentiated from KS. This growing AKS patient cohort also informs an emerging approach to management and health surveillance for these patients.


Asunto(s)
Anomalías Múltiples/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Discapacidad Intelectual/genética , Fenotipo , Anomalías Múltiples/patología , Niño , Eliminación de Gen , Humanos , Lactante , Discapacidad Intelectual/patología , Mutación con Pérdida de Función , Masculino , Mutación Missense , Síndrome , Adulto Joven
4.
Hum Mutat ; 36(10): 1009-1014, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173930

RESUMEN

We report a new syndrome due to loss-of-function variants in the heterogeneous nuclear ribonucleoprotein K gene (HNRNPK). We describe two probands: one with a de novo frameshift (NM_002140.3: c.953+1dup), and the other with a de novo splice donor site variant (NM_002140.3: c.257G>A). Both probands have intellectual disability, a shared unique craniofacial phenotype, and connective tissue and skeletal abnormalities. The identification of this syndrome was made possible by a new online tool, GeneMatcher, which facilitates connections between clinicians and researchers based on shared interest in candidate genes. This report demonstrates that new Web-based approaches can be effective in helping investigators solve exome sequencing projects, and also highlights the newer paradigm of "reverse phenotyping," where characterization of syndromic features follows the identification of genetic variants.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Bases de Datos Genéticas , Discapacidad Intelectual/genética , Atrofia Muscular/genética , Polimorfismo de Nucleótido Simple , Ribonucleoproteínas/genética , Adolescente , Niño , Predisposición Genética a la Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Humanos , Difusión de la Información , Masculino , Fenotipo , Programas Informáticos , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA