Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(29): e2200615, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988153

RESUMEN

Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, γ-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.


Asunto(s)
Orientación del Axón , gamma-Sinucleína , Cromatina/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , gamma-Sinucleína/metabolismo
2.
Nat Commun ; 11(1): 2588, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444594

RESUMEN

The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes. The combined deletion of CBP and p300 in hippocampal neurons resulted in the rapid loss of neuronal molecular identity without de- or transdifferentiation. Restoring CBP expression or lysine acetylation rescued neuronal-specific transcription in cultured neurons. Together, these experiments show that KAT3 proteins maintain the excitatory neuron identity through the regulation of histone acetylation at cell type-specific promoter and enhancer regions.


Asunto(s)
Encéfalo/citología , Lisina Acetiltransferasas/metabolismo , Neuronas/fisiología , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/fisiología , Elementos de Facilitación Genéticos , Epigenoma , Femenino , Regulación de la Expresión Génica , Lisina Acetiltransferasas/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Neuronas/citología , Fosfoproteínas/metabolismo , Factores de Transcripción p300-CBP/metabolismo
3.
Nat Neurosci ; 22(10): 1718-1730, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501571

RESUMEN

Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.


Asunto(s)
Epigenómica , Hipocampo/fisiología , Neuronas/fisiología , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Genes Inmediatos-Precoces/genética , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Regiones Promotoras Genéticas/genética , Convulsiones/genética , Convulsiones/fisiopatología , Estado Epiléptico/genética , Estado Epiléptico/fisiopatología , Factor de Transcripción AP-1/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
4.
Neuroscience ; 370: 101-111, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28366664

RESUMEN

The hippocampus enables a range of behaviors through its intrinsic circuits and concerted actions with other brain regions. One such important function is the retrieval of episodic memories. How hippocampal cells support retrieval of contextual fear memory remains largely unclear. Here we monitored phospho-activation of extracellular-regulated kinase (Erk1/2) across neuronal populations of the hippocampus to find that CA1 pyramidal neurons, but not cells in CA3 or dentate gyrus, specifically respond to retrieval of an aversive context. In contrast, retrieval of a neutral context that fails to elicit a threat response did not activate Erk1/2. Moreover, retrieval preferentially re-activated Erk1/2 in the same set of CA1 neurons previously activated during conditioning in a context-specific manner. By confining drug inhibition within dorsal CA1, we established the crucial role for Erk1/2 activity in retrieval of long-term memory, as well as in amygdala activation associated with fear expression. These data provide functional evidence that Erk1/2 signaling in CA1 encodes a specific neural representation of contextual memory with emotional value.


Asunto(s)
Región CA1 Hipocampal/enzimología , Condicionamiento Psicológico/fisiología , Recuerdo Mental/fisiología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/enzimología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Células Cultivadas , Condicionamiento Psicológico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Miedo/efectos de los fármacos , Miedo/fisiología , Indazoles/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Recuerdo Mental/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Neuronas/citología , Neuronas/efectos de los fármacos , Piperazinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...