RESUMEN
Although crucial for the addition of new nitrogen in marine ecosystems, dinitrogen (N2) fixation remains an understudied process, especially under dark conditions and in polar coastal areas, such as the West Antarctic Peninsula (WAP). New measurements of light and dark N2 fixation rates in parallel with carbon (C) fixation rates, as well as analysis of the genetic marker nifH for diazotrophic organisms, were conducted during the late summer in the coastal waters of Chile Bay, South Shetland Islands, WAP. During six late summers (February 2013 to 2019), Chile Bay was characterized by high NO3− concentrations (~20 µM) and an NH4+ content that remained stable near 0.5 µM. The N:P ratio was approximately 14.1, thus close to that of the Redfield ratio (16:1). The presence of Cluster I and Cluster III nifH gene sequences closely related to Alpha-, Delta- and, to a lesser extent, Gammaproteobacteria, suggests that chemosynthetic and heterotrophic bacteria are primarily responsible for N2 fixation in the bay. Photosynthetic carbon assimilation ranged from 51.18 to 1471 nmol C L−1 d−1, while dark chemosynthesis ranged from 9.24 to 805 nmol C L−1 d−1. N2 fixation rates were higher under dark conditions (up to 45.40 nmol N L−1 d−1) than under light conditions (up to 7.70 nmol N L−1 d−1), possibly contributing more than 37% to new nitrogen-based production (≥2.5 g N m−2 y−1). Of all the environmental factors measured, only PO43- exhibited a significant correlation with C and N2 rates, being negatively correlated (p < 0.05) with dark chemosynthesis and N2 fixation under the light condition, revealing the importance of the N:P ratio for these processes in Chile Bay. This significant contribution of N2 fixation expands the ubiquity and biological potential of these marine chemosynthetic diazotrophs. As such, this process should be considered along with the entire N cycle when further reviewing highly productive Antarctic coastal waters and the diazotrophic potential of the global marine ecosystem.
RESUMEN
The rhizosphere is considered the primary place for soil microbiome differentiation and plays a key role in plant survival, especially for those subjected to environmental stress. Using high-throughput sequencing of the 16S rRNA gene, we analyzed and compared soil bacterial communities associated to four of the most abundant high altitude native plant species of the Chilean Andean grasslands. We examined three soil compartments: the rhizosphere (bacteria firmly attached to the roots), the rhizosphere-surrounding soil (bacteria loosely attached to the roots) and the bulk soil (plant-free soil). The rhizosphere microbiome was in all cases the least diverse, exposing that the bulk soil was a more complex environment. Taxonomic analysis revealed an abrupt change between the rhizosphere and the rest of the non-rhizospheric soils. Thus, while rhizobacterial communities were enriched in Proteobacteria (mainly Alphaproteobacteria), Actinobacteria (mostly Blastocatellia) dominated in bulk soils. Finally, we detected certain taxonomic rhizosphere signatures, which could be attributed to a particular genotype. Overall, our results indicate that the thin layer of soil surrounding the roots constitute a distinctive soil environment. This study contributes to expand the knowledge about soil bacterial communities in the Chilean highlands and takes the first step to understand the processes that might lead to the rhizosphere differentiation in that area.
Asunto(s)
Bacterias/genética , Pradera , Microbiota/genética , Plantas/microbiología , Suelo , Bacterias/clasificación , Chile , Geografía , Filogenia , Rizosfera , Microbiología del SueloRESUMEN
Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.
Asunto(s)
Bacterias/aislamiento & purificación , Calentamiento Global , Cubierta de Hielo/microbiología , Actinobacteria/aislamiento & purificación , Alphaproteobacteria/aislamiento & purificación , Regiones Antárticas , Regiones Árticas , Bacterias/clasificación , Ecosistema , Flavobacteriaceae/aislamiento & purificación , Gammaproteobacteria/aislamiento & purificación , Salinidad , Estaciones del Año , Agua de Mar/microbiologíaRESUMEN
Understanding the factors that modulate bacterial community assembly in natural soils is a longstanding challenge in microbial community ecology. In this work, we compared two microbial co-occurrence networks representing bacterial soil communities from two different sections of a pH, temperature and humidity gradient occurring along a western slope of the Andes in the Atacama Desert. In doing so, a topological graph alignment of co-occurrence networks was used to determine the impact of a shift in environmental variables on OTUs taxonomic composition and their relationships. We observed that a fraction of association patterns identified in the co-occurrence networks are persistent despite large environmental variation. This apparent resilience seems to be due to: (1) a proportion of OTUs that persist across the gradient and maintain similar association patterns within the community and (2) bacterial community ecological rearrangements, where an important fraction of the OTUs come to fill the ecological roles of other OTUs in the other network. Actually, potential functional features suggest a fundamental role of persistent OTUs along the soil gradient involving nitrogen fixation. Our results allow identifying factors that induce changes in microbial assemblage configuration, altering specific bacterial soil functions and interactions within the microbial communities in natural environments.