Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37627871

RESUMEN

Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.

2.
Biomater Adv ; 145: 213275, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608438

RESUMEN

The development of new cancer treatment options, such as multifunctional devices, allows for a more personalized treatment, avoiding the known severe side effects of conventional options. In this context, on-demand drug delivery systems can actively control the rate of drug release offering a precise control of treatment. Magnetically and thermally controlled drug delivery systems have been explored as on-demand devices to treat chronic diseases and cancer tumors. In the present work, dual-stimuli responsive systems were developed by incorporating Fe3O4 magnetic nanoparticles (NPs) and poly(N-isopropylacrylamide) (PNIPAAm) microgels into electrospun polymeric fibers for application in cancer treatment. First, Fe3O4 NPs with an average diameter of 8 nm were synthesized by chemical precipitation technique and stabilized with dimercaptosuccinic acid (DMSA) or oleic acid (OA). PNIPAAm microgels were synthesized by surfactant-free emulsion polymerization (SFEP). Poly(vinyl alcohol) (PVA) was used as a fiber template originating fibers with an average diameter of 179 ± 14 nm. Stress tests of the membranes showed that incorporating both microgels and Fe3O4 NPs in electrospun fibers increases their Young's modulus. Swelling assays indicate that PVA membranes have a swelling ratio of around 3.4 (g/g) and that the presence of microgels does not affect its swelling ability. However, with the incorporation of Fe3O4 NPs, the swelling ratio of the membranes decreases. Magnetic hyperthermia assays show that a higher concentration of NPs leads to a higher heating ability. The composite membrane with the most promising results is the one incorporated with DMSA-coated NPs, since it shows the highest temperature variation, 5.1 °C. To assess the membranes biocompatibility and ability to promote cell proliferation, indirect and direct contact cell viability assays were performed, as well as cell adhesion assays. Following an extract method viability assay, all membrane designs did not reveal cytotoxic effects on dermal fibroblasts and melanoma cancer cells, after 48 h exposure and support long-term viability. The present work demonstrates the potential of dual-stimuli composite membranes for magnetic hyperthermia and may in the future be used as an alternative cancer treatment particularly in anatomically reachable solid tumors.


Asunto(s)
Hipertermia Inducida , Microgeles , Nanofibras , Neoplasias , Alcohol Polivinílico , Fenómenos Magnéticos
3.
Sci Rep ; 12(1): 22500, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577850

RESUMEN

Local molecular ordering in liquids has attracted a lot of interest from researchers investigating crystallization, but is still poorly understood on the molecular scale. Classical nucleation theory (CNT), a macroscopic thermodynamic description of condensation, has shortcomings when dealing with clusters consisting of tens of molecules. Cluster formation and local order fluctuations in liquid media are difficult to study due to the limited spatial resolution of electron- and photon-imaging methods. We used NMR relaxometry to demonstrate the existence of dynamic clusters with short-range orientational order in nominally isotropic liquids consisting of elongated molecules. We observed clusters in liquids where the local ordering is driven by polar, steric, and hydrogen-bond interactions between the molecules. In the case of a liquid crystal, measuring the local orientational order fluctuations allowed us to observe the size of these clusters diverging when approaching the phase transition from the isotropic to the nematic phase. These fluctuations are described in terms of rotational elasticity as a consequence of the correlated reorientations of the neighbouring molecules. Our quantitative observations of the dynamic clusters in liquids, numbering about ten or fewer molecules, indicate that this is a general phenomenon in various types of liquids.

4.
Adv Mater ; 34(28): e2108227, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35502142

RESUMEN

The colloidal suspensions of aqueous cellulose nanocrystals (CNCs) are known to form liquid crystalline (LC) systems above certain critical concentrations. From an isotropic phase, tactoid formation, growth, and sedimentation have been determined as the genesis of a high-density cholesteric phase, which, after drying, originates solid iridescent films. Herein, the coexistence of a liquid crystal upper phase and an isotropic bottom phase in CNC aqueous suspensions at the isotropic-nematic phase separation is reported. Furthermore, isotropic spindle-like domains are observed in the low-density LC phase and high-density LC phases are also prepared. The CNCs isolated from the low- and high-density LC phases are found to have similar average lengths, diameters, and surface charges. The existence of an LC low-density phase is explained by the presence of air dissolved in the water present within the CNCs. The air dissolves out when the water solidifies into ice and remains within the CNCs. The self-adjustment of the cellulose chain conformation enables the entrapment of air within the CNCs and CNC buoyancy in aqueous suspensions.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35564141

RESUMEN

Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.

6.
J Phys Chem B ; 125(46): 12787-12796, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34762439

RESUMEN

1H spin-lattice relaxation time (T1) measurements were performed to probe the dynamic behavior of water in aqueous suspensions of cellulose nanocrystals (CNCs) and a layered smectite clay mineral with different degrees of concentration. 1H-T1 experiments were carried out over a wide frequency domain, ranging from a few kilohertz to 500 MHz, with the aid of conventional and fast field cycling nuclear magnetic resonance (NMR) techniques. The experimental relaxometry data illustrate differences between the dynamic behavior of bulk water and that confined in the vicinity of CNC-clay surfaces. Clay alone in moderate concentration was found to enforce almost no effect on the water dynamics, whereas introducing CNCs to the system presented a significantly enhanced relaxivity. The modeling of the relaxation dispersions allowed the determination of dynamical processes and variables explaining the dynamic behavior of water in CNC-clay suspensions. It turned out that reorientations mediated by translational displacements are a leading NMR relaxation mechanism for water interacting with the surfaces of CNC-clay particles in the low-frequency domain. In the high-frequency regime, however, the inner-sphere paramagnetic relaxation mechanism dominates, which is caused by the interaction of water protons with dissolved Fe ions.


Asunto(s)
Nanopartículas , Agua , Celulosa , Arcilla , Espectroscopía de Resonancia Magnética , Suspensiones
7.
Faraday Discuss ; 223(0): 247-260, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32747884

RESUMEN

Structural vivid colours can arise from the interference of light reflected from structures exhibiting periodicity on scales in the range of visible wavelengths. This effect is observed with light reflected from cell-walls of some plants and exoskeletons of certain insects. Sometimes the colour sequence observed for these structures consists of nearly circular concentric rings that vary in colour from Red, Orange, Yellow, Green, Cyan to Blue, from the periphery to the centre, similarly to the colour scheme sequence observed for the rainbow (ROYGB). The sequence of colours has been found for solid films obtained from droplets of aqueous cellulose nanocrystals (CNCs) suspensions and attributed to a "coffee ring" effect. In this work, coloured lyotropic solutions and solid films obtained from a cellulose derivative in the presence of trifluoroacetic acid (TFA), which acts as a "reactive solvent", are revisited. The systems were investigated with spectroscopy, using circularly and linearly polarised light, coupled with a polarised optical microscope (POM) and scanning electron microscopy (SEM). The lyotropic cholesteric liquid crystalline solutions were confined in capillaries to simplify 1D molecular diffusion along the capillary where an unexpected sequence of the structural colours was observed. The development and reappearance of the sequence of vivid colours seem consistent with the reaction-diffusion of the "reactive solvent" in the presence of the cellulosic chains. The strong TFA acts as an auto-catalyst for the chemical reaction between TFA and the hydroxyl groups, existing along the cellulosic chain, and diffuses to the top and bottom along the capillaries, carrying dissolved cellulosic chains. Uncovering the precise mechanism of colour sequence and evolution over time in cellulosic lyotropic solutions has important implications for future optical/sensors applications and for the understanding of the development of cellulose-based structures in nature.


Asunto(s)
Celulosa/química , Color , Animales , Aves , Plumas , Microscopía Electrónica de Rastreo , Nanopartículas/química
8.
Adv Mater ; 30(19): e1703655, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29333680

RESUMEN

Nature has been producing cellulose since long before man walked the surface of the earth. Millions of years of natural design and testing have resulted in cellulose-based structures that are an inspiration for the production of synthetic materials based on cellulose with properties that can mimic natural designs, functions, and properties. Here, five sections describe cellulose-based materials with characteristics that are inspired by gratings that exist on the petals of the plants, structurally colored materials, helical filaments produced by plants, water-responsive materials in plants, and environmental stimuli-responsive tissues found in insects and plants. The synthetic cellulose-based materials described herein are in the form of fibers and films. Fascinating multifunctional materials are prepared from cellulose-based liquid crystals and from composite cellulosic materials that combine functionality with structural performance. Future and recent applications are outlined.

9.
Gels ; 4(2)2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30674830

RESUMEN

One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.

10.
Adv Mater ; 29(2)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27862372

RESUMEN

A new photonic structure is produced from cellulose nanocrystal iridescent films reflecting both right and left circularly polarized light. Micrometer-scale planar gaps perpendicular to the films' cross-section between two different left-handed films' cholesteric domains are impregnated with a nematic liquid crystal. This photonic feature is reversibly tuned by the application of an electric field or a temperature variation.

11.
Macromol Rapid Commun ; 36(12): 1166-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25923710

RESUMEN

The tensile strength of single cellulose acetate electrospun fibers is determined through sonication-induced fragmentation in water using a model previously developed by Terentjev and co-workers. The fragmentation of the electrospun fibers results in a gradual shortening of their length until a constant modal length is achieved. A single electrospun CA fiber tensile strength of ≈ 150 MPa (55-280 MPa) is determined based on fracture statistics. It is also observed that the fragmented fibers show bunches of nanofilaments at their ends with similar diameters to those of round structures observed in the cross-section of the initial electrospun fibers (≈ 38 nm). The sonication of these nanofilaments gives rise to spherical particles with similar diameter dimensions, which allows the estimation of a value of the tensile strength of the order of 2 MPa for these nanostructures. The aggregation and the alignment of the nano filaments inside the electrospun fiber should be the source of its higher strength value.


Asunto(s)
Celulosa/análogos & derivados , Ensayo de Materiales , Estrés Mecánico , Ondas Ultrasónicas , Celulosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA