Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Article En | MEDLINE | ID: mdl-38753088

PURPOSE: Our objective is to predict the cumulative live birth rate (CLBR) and identify the specific subset within the population undergoing preimplantation genetic testing for monogenic disorders (PGT-M) and chromosomal structural rearrangements (PGT-SR) which is likely to exhibit a diminished expected CLBR based on various patient demographics. METHODS: We performed a single-centre retrospective cohort study including 1522 women undergoing 3130 PGT cycles at a referral centre for PGT. A logistic regression analysis was performed to predict the CLBR per ovarian stimulation in women undergoing PGT-M by polymerase chain reaction (PCR) or single-nucleotide polymorphism (SNP) array, and in women undergoing PGT-SR by SNP array, array comparative genomic hybridization (CGH) or next-generation sequencing (NGS). RESULTS: The mean age of women was 32.6 years, with a mean AMH of 2.75 µg/L. Female age and AMH significantly affected the expected CLBR irrespective of the inheritance mode or PGT technology. An expected CLBR < 10% was reached above the age of 42 years and AMH ≤ 1.25 µg/L. We found no significant difference in outcome per ovarian stimulation between the different PGT technologies, i.e. PCR, SNP array, array CGH and NGS. Whereas per embryo transfer, we noticed a significantly higher probability of live birth when SNP array, array CGH and NGS were used as compared to PCR. CONCLUSION: In a PGT-setting, couples with an unfavourable female age and AMH should be informed of the prognosis to allow other reproductive choices. The heatmap produced in this study can be used as a visual tool for PGT couples.

2.
Reproduction ; 160(5): A19-A31, 2020 11.
Article En | MEDLINE | ID: mdl-33065545

While chromosomal mosaicism in the embryo was observed already in the 1990s using both karyotyping and FISH technologies, the full extent of this phenomenon and the overall awareness of the consequences of chromosomal instability on embryo development has only come with the advent of sophisticated single-cell technologies. High-throughput techniques, such as DNA microarrays and massive parallel sequencing, have shifted single-cell genome research from evaluating a few loci at a time to the ability to perform comprehensive screening of all 24 chromosomes. The development of genome-wide single-cell haplotyping methods have also enabled for simultaneous detection of single-gene disorders and aneuploidy using a single universal protocol. Today, three decades later haplotyping-based embryo testing is performed worldwide to reliably detect virtually any Mendelian hereditary disease with a known cause, including autosomal-recessive, autosomal-dominant and X-linked disorders. At the same time, these single-cell assays have also provided unique insight into the complexity of embryo genome dynamics, by elucidating mechanistic origin, nature and developmental fate of embryonic aneuploidy. Understanding the impact of postzygotically acquired genomic aberrations on embryo development is essential to determine the still controversial diagnostic value of aneuploidy screening. For that reason, considerable efforts have been put into linking the genetic constitution of the embryo not only to its morphology and implantation potential, but more importantly to its transcriptome using single-cell RNA sequencing. Collectively, these breakthrough technologies have revolutionized single-cell research and clinical practice in assisted reproduction and led to unique discoveries in early embryogenesis.


Aneuploidy , Fetal Diseases/diagnosis , Genetic Diseases, Inborn/diagnosis , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Preimplantation Diagnosis/methods , Single-Cell Analysis/methods , DNA/analysis , DNA/genetics , Embryo Research , Female , Fetal Diseases/genetics , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Humans , Mosaicism , Pregnancy
3.
Reprod Biol Endocrinol ; 15(1): 79, 2017 Oct 03.
Article En | MEDLINE | ID: mdl-28974230

BACKGROUND: Morphometric and morphokinetic evaluation of in vitro cultured human embryos allows evaluation without time restriction and reduces intra- and inter-observer variability. Even though these technologies have been reported to improve the quality of cleavage stage embryo evaluation during fresh culture, possible advantages in the evaluation of cryopreserved embryos have been scarcely explored. This study aims to compare morphometric and morphokinetic parameters between slow frozen and vitrified embryos and to determine their relationship to embryo survival and implantation rate (IR) after thawing/warming. METHODS: During fresh culture, morphometric characteristics (Total Cell Volume (TCV), symmetry, fragmentation and number of blastomeres) were measured in 286 thawed/warmed embryos. Likewise, after thawing/warming, similar morphometric characteristics were measured in 135 survived embryos. Moreover, morphokinetic parameters (time to mitosis resumption and time to compaction) were measured in 90 embryos after thawing/warming. Then, using linear regression, we investigated the differences between vitrified and slow frozen embryos and the relation of the measured characteristics to embryo survival and IR. Statistical corrections were applied to account for data clustering and for multiple testing. RESULTS: Vitrified embryos resume mitosis and start compaction significantly earlier than slow frozen embryos. Mitosis resumption rate was 82% for vitrified and 63% for slow frozen embryos and median time to mitosis resumption was 7.6 h and 13.1 h (p = 0.02), respectively. Compaction rate was 62% in vitrified and only 23% in slow frozen embryos. Median time to compaction was 18.1 h for vitrified embryos but, for slow frozen could not be computed since less than half of the slow frozen embryos reached compaction (p = 0.0001). Moreover, intact embryos resume mitosis significantly earlier than not intact ones regardless of the freezing method (rate: 79% vs. 66%, median time: 7.6 h vs 14.6 h, respectively, p = 0.03). Regarding morphometrics, slow frozen embryos showed lower TCV and higher blastomere symmetry after thawing than vitrified embryos despite having similar blastomere number. IR was related to blastomere number at cryopreservation in slow frozen embryos, but not in vitrified ones. CONCLUSIONS: Interestingly, vitrified/warmed embryos undergo mitosis resumption and compaction significantly earlier than slow frozen/thawed embryos. However, the clinical use of this morphokinetic parameters still remains to be investigated in larger studies. TRIAL REGISTRATION: Retrospectively registered on December 15, 2015 NCT02639715 .


Cell Shape , Cell Size , Cleavage Stage, Ovum/physiology , Embryo Implantation , Embryo Loss , Embryo, Mammalian/cytology , Adult , Blastomeres/cytology , Cells, Cultured , Cleavage Stage, Ovum/cytology , Cohort Studies , Cryopreservation/methods , Embryo Loss/etiology , Embryo Loss/pathology , Embryo Transfer/methods , Female , Humans , Pregnancy , Pregnancy Rate , Randomized Controlled Trials as Topic , Retrospective Studies
4.
Genome Biol ; 17(1): 250, 2016 12 09.
Article En | MEDLINE | ID: mdl-27931250

BACKGROUND: Single-cell micro-metastases of solid tumors often occur in the bone marrow. These disseminated tumor cells (DTCs) may resist therapy and lay dormant or progress to cause overt bone and visceral metastases. The molecular nature of DTCs remains elusive, as well as when and from where in the tumor they originate. Here, we apply single-cell sequencing to identify and trace the origin of DTCs in breast cancer. RESULTS: We sequence the genomes of 63 single cells isolated from six non-metastatic breast cancer patients. By comparing the cells' DNA copy number aberration (CNA) landscapes with those of the primary tumors and lymph node metastasis, we establish that 53% of the single cells morphologically classified as tumor cells are DTCs disseminating from the observed tumor. The remaining cells represent either non-aberrant "normal" cells or "aberrant cells of unknown origin" that have CNA landscapes discordant from the tumor. Further analyses suggest that the prevalence of aberrant cells of unknown origin is age-dependent and that at least a subset is hematopoietic in origin. Evolutionary reconstruction analysis of bulk tumor and DTC genomes enables ordering of CNA events in molecular pseudo-time and traced the origin of the DTCs to either the main tumor clone, primary tumor subclones, or subclones in an axillary lymph node metastasis. CONCLUSIONS: Single-cell sequencing of bone marrow epithelial-like cells, in parallel with intra-tumor genetic heterogeneity profiling from bulk DNA, is a powerful approach to identify and study DTCs, yielding insight into metastatic processes. A heterogeneous population of CNA-positive cells is present in the bone marrow of non-metastatic breast cancer patients, only part of which are derived from the observed tumor lineages.


Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Sequence Analysis, DNA , Single-Cell Analysis , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Axilla , Biomarkers, Tumor , Bone Marrow Cells/metabolism , Breast Neoplasms/metabolism , DNA Copy Number Variations , Humans , Immunohistochemistry , Lymph Nodes/pathology , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Neoplastic Cells, Circulating/pathology , Single-Cell Analysis/methods
5.
Reprod Biol Endocrinol ; 14(1): 40, 2016 Jul 30.
Article En | MEDLINE | ID: mdl-27475526

BACKGROUND: Characteristics routinely used to evaluate embryo quality after thawing include number of blastomeres survived and presence of mitosis resumption after overnight culture. It is unknown to which extent symmetry and fragmentation affect implantation after warming and whether application of stricter criteria either before vitrification or after warming would improve implantation rate (IR) of vitrified/warmed embryos. This study aimed to find new parameters to improve selection criteria for vitrification and for transfer after warming. METHODS: Firstly, we evaluated standard morphological characteristics (intact survival, mitosis resumption, number of blastomeres, symmetry and fragmentation) of 986 warmed day 3 embryos and, from a subset of 654, we evaluated morphometric characteristics (fragmentation, symmetry and volume change). Secondly, we tested the hypothesis that IR of day 3 vitrified/warmed embryos is influenced by morphometric characteristics. IR per embryo transferred was calculated using embryos that were transferred in a single embryo transfer (SET) or a double embryo transfer (DET) with either 0 or 100 % implantation (830/986). We investigated the significant differences in IR between the different categories of a specific characteristic. These categories were based on our standard embryo evaluation system. The statistical tests Chi-square, Fisher's exact or Cochrane-Armitage were used according to the type and/or categories of the variable. RESULTS: The 986 embryos were transferred in 671 FET cycles with 16.9 % (167/986) IR. After exclusion of DET with 1 embryo implanted, IR per embryo transferred was 12.4 % (103/830). Embryo symmetry, fragmentation and volume change in vitrified/warmed day 3 embryos were not associated with IR. However, when mitosis resumption was present after overnight culture, intact embryos reached significantly higher IR than non-intact embryos and only when the embryo compacted after overnight culture the number of cells damaged after warming had no effect on IR. Concretely, embryos with 8 cells after warming or >9 cells after overnight culture-including compacted embryos-reached the highest IR (>15 %) while embryos with <6 cells after warming or with ≤6 cells after overnight culture had extremely low IR (<1 %). CONCLUSIONS: IR of vitrified embryos is determined by the number of cells lost, by the occurrence of mitosis resumption, and by the specific number of blastomeres present but not by fragmentation, blastomere symmetry or volume change. Unselecting embryos for cryopreservation because of fragmentation >10 % and/or symmetry < 75 % only leads to unwanted loss of embryos with acceptable implantation potential. TRIAL REGISTRATION: Retrospectively registered NCT02639715 .


Cryopreservation/methods , Embryo Implantation/physiology , Hot Temperature , Single Embryo Transfer/methods , Vitrification , Adult , Cohort Studies , Cryopreservation/trends , Embryo Culture Techniques/methods , Female , Humans , Pregnancy , Retrospective Studies , Single Embryo Transfer/trends
6.
Nat Commun ; 7: 11165, 2016 Mar 29.
Article En | MEDLINE | ID: mdl-27021558

Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.


Aneuploidy , Blastocyst/cytology , Cell Lineage/genetics , Models, Genetic , Mosaicism , Animals , Cell Count , Chromosome Segregation/drug effects , Chromosomes, Mammalian/drug effects , Embryo Implantation , Female , Fertilization in Vitro , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mitosis/drug effects , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Zygote/cytology , Zygote/drug effects
...