Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38569896

RESUMEN

MOTIVATION: Long-read sequencing technologies, an attractive solution for many applications, often suffer from higher error rates. Alignment of multiple reads can improve base-calling accuracy, but some applications, e.g. sequencing mutagenized libraries where multiple distinct clones differ by one or few variants, require the use of barcodes or unique molecular identifiers. Unfortunately, sequencing errors can interfere with correct barcode identification, and a given barcode sequence may be linked to multiple independent clones within a given library. RESULTS: Here we focus on the target application of sequencing mutagenized libraries in the context of multiplexed assays of variant effects (MAVEs). MAVEs are increasingly used to create comprehensive genotype-phenotype maps that can aid clinical variant interpretation. Many MAVE methods use long-read sequencing of barcoded mutant libraries for accurate association of barcode with genotype. Existing long-read sequencing pipelines do not account for inaccurate sequencing or nonunique barcodes. Here, we describe Pacybara, which handles these issues by clustering long reads based on the similarities of (error-prone) barcodes while also detecting barcodes that have been associated with multiple genotypes. Pacybara also detects recombinant (chimeric) clones and reduces false positive indel calls. In three example applications, we show that Pacybara identifies and correctly resolves these issues. AVAILABILITY AND IMPLEMENTATION: Pacybara, freely available at https://github.com/rothlab/pacybara, is implemented using R, Python, and bash for Linux. It runs on GNU/Linux HPC clusters via Slurm, PBS, or GridEngine schedulers. A single-machine simplex version is also available.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biblioteca de Genes , Genotipo , Análisis por Conglomerados
2.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36865234

RESUMEN

Long read sequencing technologies, an attractive solution for many applications, often suffer from higher error rates. Alignment of multiple reads can improve base-calling accuracy, but some applications, e.g. sequencing mutagenized libraries where multiple distinct clones differ by one or few variants, require the use of barcodes or unique molecular identifiers. Unfortunately, sequencing errors can interfere with correct barcode identification, and a given barcode sequence may be linked to multiple independent clones within a given library. Here we focus on the target application of sequencing mutagenized libraries in the context of multiplexed assays of variant effects (MAVEs). MAVEs are increasingly used to create comprehensive genotype-phenotype maps that can aid clinical variant interpretation. Many MAVE methods use long-read sequencing of barcoded mutant libraries for accurate association of barcode with genotype. Existing long-read sequencing pipelines do not account for inaccurate sequencing or non-unique barcodes. Here, we describe Pacybara, which handles these issues by clustering long reads based on the similarities of (error-prone) barcodes while also detecting barcodes that have been associated with multiple genotypes. Pacybara also detects recombinant (chimeric) clones and reduces false positive indel calls. In three example applications, we show that Pacybara identifies and correctly resolves these issues.

3.
R Soc Open Sci ; 9(1): 210948, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35116142

RESUMEN

College campuses are vulnerable to infectious disease outbreaks, and there is an urgent need to develop better strategies to mitigate their size and duration, particularly as educational institutions around the world adapt to in-person instruction during the COVID-19 pandemic. Towards addressing this need, we applied a stochastic compartmental model to quantify the impact of university-level responses to contain a mumps outbreak at Harvard University in 2016. We used our model to determine which containment interventions were most effective and study alternative scenarios without and with earlier interventions. This model allows for stochastic variation in small populations, missing or unobserved case data and changes in disease transmission rates post-intervention. The results suggest that control measures implemented by the University's Health Services, including rapid isolation of suspected cases, were very effective at containing the outbreak. Without those measures, the outbreak could have been four times larger. More generally, we conclude that universities should apply (i) diagnostic protocols that address false negatives from molecular tests and (ii) strict quarantine policies to contain the spread of easily transmissible infectious diseases such as mumps among their students. This modelling approach could be applied to data from other outbreaks in college campuses and similar small population settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...