RESUMEN
Organotin compounds are persistent pollutants and are considered chemicals of high environmental concern. In the present study, the distribution and degradation of tributyltin were evaluated in field sediments and through an ex situ experiment. For this, sediment samples from two locations were analysed: Luis Piedrabuena Harbour, with higher maritime traffic, and Cerro Avanzado, which receives less impact from anthropogenic activities. The results indicated that pollution levels at Luis Piedrabuena Harbour have decreased compared with studies performed 9 years ago for the same area. On the contrary, traces of organotin compounds have been found for the first time at Cerro Avanzado. Moreover, the butyltin degradation index indicated that organotin compounds undergo an advanced degradation process in the collected samples at both sites. Ex situ experiments revealed a limited capacity of sediments to retain tributyltin, and suggested an active role of bioturbation activity in the degradation of these compounds. In addition, visualisation using chemometric techniques (principal components analysis) allowed a simpler analysis of two sediment characteristics: the degree of contamination and the degradation levels of organotin compounds.
Asunto(s)
Compuestos Orgánicos de Estaño , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Compuestos Orgánicos de Estaño/análisis , Sedimentos Geológicos/química , Argentina , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Compuestos de Trialquiltina/análisisRESUMEN
The influence of the phytoplankton community in the light absorption budget was quantified in coastal waters of the North region of the San Jorge Gulf (Argentinian Patagonia). The phytoplanktonic composition and their absorption spectra were determined. Nanoflagellates and diatoms were the dominant groups. The toxigenic dinoflagellate Dinophysis acuminata was recorded in all the sampling sites. The optical characterization of the particulate material showed that 60 % of the absorption at 443 nm and 88 % of absorption at 675 nm was due to phytoplankton. The contributions of phytoplankton to total absorption at 443 nm wavelengths reached 50 %. The absorption by chromophoric dissolved organic matter (CDOM) and non-algal particles (NAP) was predominant in turbulent waters (>60 %). This study shows the influence of submesoscale physical-biological interactions in the light absorption budget. The field absorption spectra of active optical components are of interest in the assessment and development of regional ocean color satellite algorithms.
Asunto(s)
Diatomeas , Dinoflagelados , Fitoplancton , Algoritmos , Materia Orgánica DisueltaRESUMEN
Petroleum can pollute pristine shorelines as a consequence of accidental spills or chronic leaks. In this study, the fate of petroleum hydrocarbons in soft pristine sediment of Caleta Valdés (Argentina) subject to ex situ simulated oil pollution was assessed. Sedimentary columns were exposed to medium and high concentrations of Escalante Crude Oil (ECO) and incubated in the laboratory during 30 days. Levels of aliphatic hydrocarbons at different depths of the sedimentary column were determined by gas chromatography. Oil penetration was limited to the first three centimetres in both treatments, and under this depth, hydrocarbons were clearly biogenic (terrestrial plants) as in the whole sedimentary column of the control assay. Bioturbation by macrobenthic infauna was strongly impacted by oil pollution which resulted in reduced sediment oxygenation and low burial of petroleum hydrocarbons. This may partly explain the limited hydrocarbon biodegradation observed, as indicated by the relatively high values of the ratios nC17/pristane, nC18/phytane, and total resolved aliphatic hydrocarbons/unresolved complex mixture. Correspondingly, at the end of the experiment the most probable number of hydrocarbon-degrading bacteria reached ~ 103 MPNâ¯g-1 dry weight. These values were lower than those found in chronically polluted coastal sediments, reflecting a low activity level of the oil-degrading community. The results highlight the low attenuation capacities of Caleta Valdés pristine sediments to recover its original characteristics in a short time period if an oil spill occurs. In this work, we present a novel and integrative tool to evaluate the fate of petroleum hydrocarbons and their potential damage on pristine sediments.