Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Brain Res Bull ; 213: 110978, 2024 May 15.
Article En | MEDLINE | ID: mdl-38759704

Circadian rhythms are endogenous, near 24-hour rhythms that regulate a multitude of biological and behavioral processes across the diurnal cycle in most organisms. Over the lifespan, a bell curve pattern emerges in circadian phase preference (i.e. chronotype), with children and adults generally preferring to wake earlier and fall asleep earlier, and adolescents and young adults preferring to wake later and fall asleep later than their adult counterparts. This well-defined shift speaks to the variability of circadian rhythmicity over the lifespan and the changing needs and demands of the brain as an organism develops, particularly in the adolescent period. Indeed, adolescence is known to be a critical period of development during which dramatic neuroanatomical changes are occurring to allow for improved decision-making. Due to the large amount of re-structuring occurring in the adolescent brain, circadian disruptions during this period could have adverse consequences that persist across the lifespan. While the detrimental effects of circadian disruptions in adults have been characterized in depth, few studies have longitudinally assessed the potential long-term impacts of circadian disruptions during adolescence. Here, we will review the evidence that disruptions in circadian rhythmicity during adolescence have effects that persist into adulthood. As biological and social time often conflict in modern society, with school start times misaligned with adolescents' endogenous rhythms, it is critical to understand the long-term impacts of disrupted circadian rhythmicity in adolescence.

2.
Elife ; 132024 Apr 15.
Article En | MEDLINE | ID: mdl-38619041

Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.


Extinction, Psychological , Fear
3.
Front Behav Neurosci ; 18: 1347525, 2024.
Article En | MEDLINE | ID: mdl-38420349

Fear memory formation and retention rely on the activation of distributed neural circuits. The basolateral amygdala (BLA) and ventral hippocampus (VH) in particular are two regions that support contextual fear memory processes and share reciprocal connections. The VH → BLA pathway is critical for increases in fear after initial learning, in both fear renewal following extinction learning and during fear generalization. This raises the possibility that functional changes in VH projections to the BLA support increases in learned fear. In line with this, fear can also be increased with alterations to the original content of the memory via reconsolidation, as in fear elevation procedures. However, very little is known about the functional changes in the VH → BLA pathway supporting reconsolidation-related increases in fear. In this study, we used in vivo extracellular electrophysiology to examine the functional neuronal changes within the BLA and in the VH → BLA pathway as a result of fear elevation and standard fear retrieval procedures. Elevated fear expression was accompanied by higher BLA spontaneous firing compared to a standard fear retrieval condition. Across a range of stimulation frequencies, we also found that VH stimulation evoked higher BLA firing following fear elevation compared to standard retrieval. These results suggest that fear elevation is associated with an increased capacity of the VH to drive neuronal activity in the BLA, highlighting a potential circuit involved in strengthening existing fear memories.

4.
J Neurosci ; 43(45): 7456-7462, 2023 11 08.
Article En | MEDLINE | ID: mdl-37940586

Environmentally appropriate social behavior is critical for survival across the lifespan. To support this flexible behavior, the brain must rapidly perform numerous computations taking into account sensation, memory, motor-control, and many other systems. Further complicating this process, individuals must perform distinct social behaviors adapted to the unique demands of each developmental stage; indeed, the social behaviors of the newborn would not be appropriate in adulthood and vice versa. However, our understanding of the neural circuit transitions supporting these behavioral transitions has been limited. Recent advances in neural circuit dissection tools, as well as adaptation of these tools for use at early time points, has helped uncover several novel mechanisms supporting developmentally appropriate social behavior. This review, and associated Minisymposium, bring together social neuroscience research across numerous model organisms and ages. Together, this work highlights developmentally regulated neural mechanisms and functional transitions in the roles of the sensory cortex, prefrontal cortex, amygdala, habenula, and the thalamus to support social interaction from infancy to adulthood. These studies underscore the need for synthesis across varied model organisms and across ages to advance our understanding of flexible social behavior.


Amygdala , Social Behavior , Infant, Newborn , Humans , Prefrontal Cortex , Brain
5.
Biol Psychiatry Glob Open Sci ; 3(4): 756-765, 2023 Oct.
Article En | MEDLINE | ID: mdl-37881558

Background: Context fear memory can be reliably reduced by subsequent pairings of that context with a weaker shock. This procedure shares similarities with extinction learning: both involve extended time in the conditioning chamber following training and reduce context-elicited fear. Unlike extinction, this weak-shock exposure has been hypothesized to engage reconsolidation-like processes that weaken the original memory. Methods: We directly compared the weak-shock procedure with extinction using male and female Long Evans rats. Results: Both repeated weak-shock exposure and extinction resulted in decreased context freezing relative to animals that received context fear conditioning but no subsequent context exposure. Conditioning with the weak shock was not enough to form a persistent context-shock association on its own, suggesting that the weak-shock procedure does not create a new memory. Weak-shock exposure in a new context can still reduce freezing elicited by the training context, suggesting that it reduces responding through a different process than extinction, which does not transcend context. Finally, reduced fear behavior produced through both extinction and weak-shock exposure was mirrored by reduced zif268 expression in the basolateral amygdala. However, only the weak-shock procedure resulted in changes in lysine-48 polyubiquitin tagging in the synapse of the basolateral amygdala, suggesting that this procedure produced long-lasting changes in synaptic function within the basolateral amygdala. Conclusions: These results suggest that the weak-shock procedure does not rely on the creation of a new inhibitory memory, as in extinction, and instead may alter the original representation of the shock to reduce fear responding.

6.
Neurobiol Learn Mem ; 201: 107762, 2023 05.
Article En | MEDLINE | ID: mdl-37116857

Social behaviors dynamically change throughout the lifespan alongside the maturation of neural circuits. The basolateral region of the amygdala (BLA), in particular, undergoes substantial maturational changes from birth throughout adolescence that are characterized by changes in excitation, inhibition, and dopaminergic modulation. In this review, we detail the trajectory through which BLA circuits mature and are influenced by dopaminergic systems to guide transitions in social behavior in infancy and adolescence using data from rodents. In early life, social behavior is oriented towards approaching the attachment figure, with minimal BLA involvement. Around weaning age, dopaminergic innervation of the BLA introduces avoidance of novel peers into rat pups' behavioral repertoire. In adolescence, social behavior transitions towards peer-peer interactions with a high incidence of social play-related behaviors. This transition coincides with an increasing role of the BLA in the regulation of social behavior. Adolescent BLA maturation can be characterized by an increasing integration and function of local inhibitory GABAergic circuits and their engagement by the medial prefrontal cortex (mPFC). Manipulation of these transitions using viral circuit dissection techniques and early adversity paradigms reveals the sensitivity of this system and its role in producing age-appropriate social behavior.


Amygdala , Prefrontal Cortex , Rats , Animals , Prefrontal Cortex/physiology , Amygdala/physiology , Dopamine/physiology , Social Behavior
7.
Cereb Cortex ; 33(13): 8391-8404, 2023 06 20.
Article En | MEDLINE | ID: mdl-37032624

Prefrontal cortical maturation coincides with adolescent transitions in social engagement, suggesting that it influences social development. The anterior cingulate cortex (ACC) is important for social interaction, including ACC outputs to the basolateral amygdala (BLA). However, little is known about ACC-BLA sensitivity to the social environment and if this changes during maturation. Here, we used brief (2-hour) isolation to test the immediate impact of changing the social environment on the ACC-BLA circuit and subsequent shifts in social behavior of adolescent and adult rats. We found that optogenetic inhibition of the ACC during brief isolation reduced isolation-driven facilitation of social interaction across ages. Isolation increased activity of ACC-BLA neurons across ages, but altered the influence of ACC on BLA activity in an age-dependent manner. Isolation reduced the inhibitory impact of ACC stimulation on BLA neurons in a frequency-dependent manner in adults, but uniformly suppressed ACC-driven BLA activity in adolescents. This work identifies isolation-driven alterations in an ACC-BLA circuit, and the ACC itself as an essential region sensitive to social environment and regulates its impact on social behavior in both adults and adolescents.


Basolateral Nuclear Complex , Olfactory Cortex , Rats , Male , Animals , Basolateral Nuclear Complex/physiology , Prefrontal Cortex/physiology , Gyrus Cinguli/physiology , Neurons/physiology
8.
Behav Brain Res ; 446: 114418, 2023 05 28.
Article En | MEDLINE | ID: mdl-37004789

Social stressors negatively impact social function, and this is mediated by the amygdala across species. Social defeat stress is an ethologically relevant social stressor in adult male rats that increases social avoidance, anhedonia, and anxiety-like behaviors. While amygdala manipulations can mitigate the negative effects of social stressors, the impact of social defeat on the basomedial subregion of the amygdala is relatively unclear. Understanding the role of the basomedial amygdala may be especially important, as prior work has demonstrated that it drives physiological responses to stress, including heart-rate related responses to social novelty. In the present study, we quantified the impact of social defeat on social behavior and basomedial amygdala neuronal responses using anesthetized in vivo extracellular electrophysiology in adult male Sprague Dawley rats. Socially defeated rats displayed increased social avoidance behavior towards novel Sprague Dawley conspecifics and reduced time initiating social interactions relative to controls. This effect was most pronounced in rats that displayed defensive, boxing behavior during social defeat sessions. We next found that socially defeated rats showed lower overall basomedial amygdala firing and altered the distribution of neuronal responses relative to the control condition. We separated neurons into low and high Hz firing groups, and neuronal firing was reduced in both low and high Hz groups but in a slightly different manner. This work demonstrates that basomedial amygdala activity is sensitive to social stress, displaying a distinct pattern of social stress-driven activity relative to other amygdala subregions.


Basolateral Nuclear Complex , Social Defeat , Rats , Animals , Male , Rats, Sprague-Dawley , Amygdala , Neurons , Stress, Psychological , Social Behavior
9.
Front Synaptic Neurosci ; 15: 1146665, 2023.
Article En | MEDLINE | ID: mdl-36937567

Following fear conditioning, behavior can be reduced by giving many CS-alone presentations in a process known as extinction or by presenting a few CS-alone presentations and interfering with subsequent memory reconsolidation. While the two share procedural similarities, both the behavioral outcomes and the neurobiological underpinnings are distinct. Here we review the neural and behavioral mechanisms that produce these separate behavioral reductions, as well as some factors that determine whether or not a retrieval-dependent reconsolidation process or an extinction process will be in effect.

10.
Psychopharmacology (Berl) ; 240(3): 647-671, 2023 Mar.
Article En | MEDLINE | ID: mdl-36645464

RATIONALE: Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS: The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 µg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 µg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS: Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS: These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.


Basolateral Nuclear Complex , Rats , Male , Animals , Lipopolysaccharides/pharmacology , Amygdala , Social Behavior , Anxiety , Inflammation
11.
Neuropharmacology ; 224: 109367, 2023 02 15.
Article En | MEDLINE | ID: mdl-36464208

A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.


Fear , Stress Disorders, Post-Traumatic , Adolescent , Humans , Fear/physiology , Learning/physiology , Anxiety , Prefrontal Cortex/physiology , Anxiety Disorders
12.
Front Behav Neurosci ; 16: 956102, 2022.
Article En | MEDLINE | ID: mdl-36090658

Adolescence is a developmental period characterized by brain maturation and changes in social engagement. Changes in the social environment influence social behaviors. Memories of social events, including remembering familiar individuals, require social engagement during encoding. Therefore, existing differences in adult and adolescent social repertoires and environmentally-driven changes in social behavior may impact novel partner preference, associated with social recognition. Several amygdala subregions are sensitive to the social environment and can influence social behavior, which is crucial for novelty preference. Amygdala neurons project to the septum and nucleus accumbens (NAc), which are linked to social engagement. Here, we investigated how the social environment impacts age-specific social behaviors during social encoding and its subsequent impact on partner preference. We then examined changes in amygdala-septal and -NAc circuits that accompany these changes. Brief isolation can drive social behavior in both adults and adolescents and was used to increase social engagement during encoding. We found that brief isolation facilitates social interaction in adolescents and adults, and analysis across time revealed that partner discrimination was intact in all groups, but there was a shift in preference within isolated and non-isolated groups. We found that this same isolation preferentially increases basal amygdala (BA) activity relative to other amygdala subregions in adults, but activity among amygdala subregions was similar in adolescents, even when considering conditions (no isolation, isolation). Further, we identify isolation-driven increases in BA-NAc and BA-septal circuits in both adults and adolescents. Together, these results provide evidence for changes in neuronal populations within amygdala subregions and their projections that are sensitive to the social environment that may influence the pattern of social interaction within briefly isolated groups during development.

13.
Neurobiol Learn Mem ; 192: 107626, 2022 07.
Article En | MEDLINE | ID: mdl-35545212

Microglia are critical for regulation of neuronal circuits that mature from adolescence to adulthood. The morphological complexity and process length of microglia can indicate different activation states. These states are sensitive to a variety of environmental and stress conditions. Microglia are sensitive to many factors that also regulate social behavior, and in turn, microglial manipulations can impact social function. Brief social isolation is one factor that can lead to robust social changes. Here, we explored the role of microglia in the effects of brief social isolation on social recognition memory. Using morphological measures of Iba1 to index microglial intensity, complexity, and process length, we identified different effects of brief isolation on microglial complexity in the basal region of the amygdala between adults and adolescents alongside overall increases in intensity of Iba1 in several cortical brain regions. Short-term social recognition memory is sensitive to the amount of social engagement, and provides an opportunity to test if social engagement produced by brief isolation enhances social learning in a manner that relies on microglia. We found that brief isolation facilitated social interaction across ages but had opposing effects on short-term social recognition. Isolation increased novel partner investigation in adolescents, which is consistent with better social recognition, but increased familiar partner investigation in adults. Depletion of microglia with PLX3397 prevented these effects of brief isolation in adolescents, and reduced them in adults. These results suggest that distinct changes in microglial function driven by the social environment may differentially contribute to subsequent social recognition memory during development.


Microglia , Neurons , Amygdala , Brain , Microglia/physiology , Social Isolation
14.
Neuropsychopharmacology ; 47(10): 1808-1815, 2022 09.
Article En | MEDLINE | ID: mdl-35039643

Risk assessment behaviors are necessary for gathering risk information and guiding decision-making. Risky decision-making heightens during adolescence, possibly as a result of low risk awareness and an increase in sensitivity to reward-associated cues and experiences. Higher adolescent engagement in high-risk behaviors may be, in part, due to developing circuits that contribute to risk assessment behaviors. Nucleus accumbens (NAc) activity is linked to risky decision-making and receives inputs carrying sensory and emotional information. Namely, the medial orbitofrontal cortex (MO) contributes to behavior guided by reward probability and sends direct projections to the NAc (MO→NAc), which may permit risk assessment in a mature circuit. Here, we evaluated risk assessment behaviors in adult and adolescent rats during elevated plus maze (EPM) exploration, including stretch and attend postures, head dips, and rears. We found that adolescents exhibited fewer EPM risk assessment behaviors than adults. We also quantified MO→NAc projections using a fluorescent anterograde tracer, Fluoro-Ruby, in both age groups. Labeled MO→NAc pathways exhibited greater total fluorescence in adults than in adolescents, indicating MO→NAc fibers increase over development. Using a disconnection approach to measure the contribution of the MO-NAc pathway in adults, we found that ipsilateral inactivation of the MO-NAc did not alter risk assessment behavior; however, MO-NAc disconnection reduced the number of stretch-and-attend postures. Together, this work suggests that the development of MO-NAc pathways can contribute to age-dependent differences in risk assessment.


Nucleus Accumbens , Prefrontal Cortex , Animals , Nucleus Accumbens/physiology , Prefrontal Cortex/physiology , Rats , Reward , Risk Assessment , Risk-Taking
15.
J Neurosci ; 41(45): 9308-9325, 2021 11 10.
Article En | MEDLINE | ID: mdl-34611026

Amygdala abnormalities characterize several psychiatric disorders with prominent social deficits and often emerge during adolescence. The basolateral amygdala (BLA) bidirectionally modulates social behavior and has increased sensitivity during adolescence. We tested how an environmentally-driven social state is regulated by the BLA in adults and adolescent male rats. We found that a high social drive state caused by brief social isolation increases age-specific social behaviors and increased BLA neuronal activity. Chemogenetic inactivation of BLA decreased the effect of high social drive on social engagement. High social drive preferentially enhanced BLA activity during social engagement; however, the effect of social opportunity on BLA activity was greater during adolescence. While this identifies a substrate underlying age differences in social drive, we then determined that high social drive increased BLA NMDA GluN2B expression and sensitivity to antagonism increased with age. Further, the effect of a high social drive state on BLA activity during social engagement was diminished by GluN2B blockade in an age-dependent manner. These results demonstrate the necessity of the BLA for environmentally driven social behavior, its sensitivity to social opportunity, and uncover a maturing role for BLA and its GluN2B receptors in social engagement.SIGNIFICANCE STATEMENT Social engagement during adolescence is a key component of healthy development. Social drive provides the impetus for social engagement and abnormalities underlie social symptoms of depression and anxiety. While adolescence is characterized by transitions in social drive and social environment sensitivity, little is known about the neural basis for these changes. We found that amygdala activity is uniquely sensitive to social environment during adolescence compared with adulthood, and is required for expression of heightened social drive. In addition, the neural substrates shift toward NMDA dependence in adulthood. These results are the first to demonstrate a unique neural signature of higher social drive and begin to uncover the underlying factors that heighten social engagement during adolescence.


Adolescent Development/physiology , Basolateral Nuclear Complex/physiology , Behavior, Animal/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Social Behavior , Adolescent , Animals , Humans , Male , Rats , Rats, Sprague-Dawley
16.
Neurobiol Learn Mem ; 185: 107530, 2021 11.
Article En | MEDLINE | ID: mdl-34592468

Previous work investigating the role of the retrosplenial cortex (RSC) in memory formation has demonstrated that its contributions are not uniform throughout the rostro-caudal axis. While the anterior region was necessary for encoding CS information in a trace conditioning procedure, the posterior retrosplenial cortex was needed to encode contextual information. Using the same behavioral procedure, we tested if there was a similar dissociation during memory retrieval. First, we found that memory retrieval following trace conditioning results in increased neural activity in both the anterior and posterior retrosplenial cortex, measured using the immediate early gene zif268. Similar increases were not found in either RSC subregion using a delay conditioning task. We then found that optogenetic inhibition of neural activity in either subregion impairs retrieval of a trace, but not delay, memory. Together these results add to a growing literature showing a role for the retrosplenial cortex in memory formation and retention. Further, they suggest that following formation, memory storage becomes distributed to a wider network than is needed for its initial consolidation.


Fear/physiology , Gyrus Cinguli/physiology , Mental Recall/physiology , Optogenetics , Animals , Conditioning, Classical/physiology , Fluorescent Antibody Technique , Gyrus Cinguli/anatomy & histology , Male , Optogenetics/methods , Rats , Rats, Long-Evans
17.
Neurobiol Learn Mem ; 185: 107526, 2021 11.
Article En | MEDLINE | ID: mdl-34562619

Heightened fear responding is characteristic of fear- and anxiety-related disorders, including post-traumatic stress disorder. Neural plasticity in the amygdala is essential for both initial fear learning and fear expression, and strengthening of synaptic connections between the medial geniculate nucleus (MgN) and amygdala is critical for auditory fear learning. However, very little is known about what happens in the MgN-amygdala pathway during fear recall and extinction, in which conditional fear decreases with repeated presentations of the auditory stimulus alone. In the present study, we found that optogenetic inhibition of activity in the MgN-amygdala pathway during fear retrieval and extinction reduced expression of conditional fear. While this effect persisted for at least two weeks following pathway inhibition, it was specific to the context in which optogenetic inhibition occurred, linking MgN-BLA inhibition to facilitation of extinction-like processes. Reduced fear expression through inhibition of the MgN-amygdala pathway was further characterized by similar synaptic expression of GluA1 and GluA2 AMPA receptor subunits compared to what was seen in controls. Inhibition also decreased CREB phosphorylation in the amygdala, similar to what has been reported following auditory fear extinction. We then demonstrated that this effect was reduced by inhibition of GluN2B-containing NMDA receptors. These results demonstrate a new and important role for the MgN-amygdala pathway in extinction-like processes, and show that suppressing activity in this pathway results in a persistent decrease in fear behavior.


Amygdala/physiology , Conditioning, Classical/physiology , Fear/physiology , Geniculate Bodies/physiology , Neural Pathways/physiology , Acoustic Stimulation , Animals , Conditioning, Classical/drug effects , Extinction, Psychological/physiology , Fluorescent Antibody Technique , Hylobatidae , Male , Optogenetics , Piperidines/pharmacology , Rats , Rats, Long-Evans , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/physiology
18.
Neurosci Biobehav Rev ; 130: 178-184, 2021 11.
Article En | MEDLINE | ID: mdl-34450181

While the anterior cingulate (ACC) and retrosplenial (RSC) cortices have been extensively studied for their role in spatial navigation, less is known about how they contribute to associative learning and later memory recall. The limited work that has been conducted on this topic suggests that each of these cortical regions makes distinct, but similar contributions to associative learning and memory. Here, we review evidence from the rodent literature demonstrating that while ACC activity seems to be necessary at remote time points associated with imprecise or generalized memories, the role of the RSC seems to be uniform over time. Together, the lines of evidence reviewed here suggest that the ACC and RSC likely function together to support memory formation and maintenance following associative learning.


Gyrus Cinguli , Rodentia , Animals , Conditioning, Classical , Memory
19.
Front Cell Neurosci ; 15: 663418, 2021.
Article En | MEDLINE | ID: mdl-34239418

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved neuropeptide that regulates neuronal physiology and transcription through Gs/Gq-coupled receptors. Its actions within hypothalamic, limbic, and mnemonic systems underlie its roles in stress regulation, affective processing, neuroprotection, and cognition. Recently, elevated PACAP levels and genetic disruption of PAC1 receptor signaling in humans has been linked to maladaptive threat learning and pathological stress and fear in post-traumatic stress disorder (PTSD). PACAP is positioned to integrate stress and memory in PTSD for which memory of the traumatic experience is central to the disorder. However, PACAP's role in memory has received comparatively less attention than its role in stress. In this review, we consider the evidence for PACAP-PAC1 receptor signaling in learning and plasticity, discuss emerging data on sex differences in PACAP signaling, and raise key questions for further study toward elucidating the contribution of PACAP to adaptive and maladaptive fear learning.

20.
Neurosci Biobehav Rev ; 125: 11-25, 2021 06.
Article En | MEDLINE | ID: mdl-33581221

Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.


Amygdala , Fear , Adolescent , Adult , Anxiety , Anxiety Disorders , Humans , Social Behavior
...