Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101258, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38779336

RESUMEN

Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.

2.
J Thromb Haemost ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663489

RESUMEN

Regulation of fibrinolysis, the process that degrades blood clots, is pivotal in maintaining hemostasis. Dysregulation leads to thrombosis or excessive bleeding. Proteins in the fibrinolysis system include fibrinogen, coagulation factor XIII, plasminogen, tissue plasminogen activator, urokinase plasminogen activator, α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, plasminogen activator inhibitor-1, α2-macroglobulin, and others. While each of these is a potential therapeutic target for diseases, they lack effective or long-acting inhibitors. Rapid advances in RNA-based technologies are creating powerful tools to control the expression of proteins. RNA agents can be long-acting and tailored to either decrease or increase production of a specific protein. Advances in nucleic acid delivery, such as by lipid nanoparticles, have enabled the delivery of RNA to the liver, where most proteins of coagulation and fibrinolysis are produced. This review will summarize the classes of RNA that induce 1) inhibition of protein synthesis, including small interfering RNA and antisense oligonucleotides; 2) protein expression, including messenger RNA and self-amplifying RNA; and 3) gene editing for gene knockdown and precise editing. It will review specific examples of RNA therapies targeting proteins in the coagulation and fibrinolysis systems and comment on the wide range of opportunities for controlling fibrinolysis for biological applications and future therapeutics using state-of-the-art RNA therapies.

3.
Mol Pharm ; 19(7): 2175-2182, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35642083

RESUMEN

Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.


Asunto(s)
COVID-19 , Nanopartículas , Amino Alcoholes , Animales , Caprilatos , Cationes/metabolismo , Decanoatos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Lípidos , Liposomas , Ratones , ARN Interferente Pequeño , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...