Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 187: 106485, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270149

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe lung condition with high mortality and various causes, including lung infection. No specific treatment is currently available and more research aimed at better understanding the pathophysiology of ARDS is needed. Most lung-on-chip models that aim at mimicking the air-blood barrier are designed with a horizontal barrier through which immune cells can migrate vertically, making it challenging to visualize and investigate their migration. In addition, these models often lack a barrier of natural protein-derived extracellular matrix (ECM) suitable for live cell imaging to investigate ECM-dependent migration of immune cells as seen in ARDS. This study reports a novel inflammation-on-chip model with live cell imaging of immune cell extravasation and migration during lung inflammation. The three-channel perfusable inflammation-on-chip system mimics the lung endothelial barrier, the ECM environment and the (inflamed) lung epithelial barrier. A chemotactic gradient was established across the ECM hydrogel, leading to the migration of immune cells through the endothelial barrier. We found that immune cell extravasation depends on the presence of an endothelial barrier, on the ECM density and stiffness, and on the flow profile. In particular, bidirectional flow, broadly used in association with rocking platforms, was found to significantly delay extravasation of immune cells in contrast to unidirectional flow. Extravasation was increased in the presence of lung epithelial tissue. This model is currently used to study inflammation-induced immune cell migration but can be used to study infection-induced immune cell migration under different conditions, such as ECM composition, density and stiffness, type of infectious agents used, and the presence of organ-specific cell types.


Asunto(s)
Neumonía , Síndrome de Dificultad Respiratoria , Humanos , Pulmón/metabolismo , Inflamación/metabolismo , Movimiento Celular
2.
Adv Exp Med Biol ; 1413: 191-211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195532

RESUMEN

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.


Asunto(s)
Pulmón , Alveolos Pulmonares , Matriz Extracelular , Dispositivos Laboratorio en un Chip
3.
iScience ; 26(3): 106198, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36879808

RESUMEN

The endothelium of blood vessels is a vital organ that reacts differently to subtle changes in stiffness and mechanical forces exerted on its environment (extracellular matrix (ECM)). Upon alteration of these biomechanical cues, endothelial cells initiate signaling pathways that govern vascular remodeling. The emerging organs-on-chip technologies allow the mimicking of complex microvasculature networks, identifying the combined or singular effects of these biomechanical or biochemical stimuli. Here, we present a microvasculature-on-chip model to investigate the singular effect of ECM stiffness and mechanical cyclic stretch on vascular development. Following two different approaches for vascular growth, the effect of ECM stiffness on sprouting angiogenesis and the effect of cyclic stretch on endothelial vasculogenesis are studied. Our results indicate that ECM hydrogel stiffness controls the size of the patterned vasculature and the density of sprouting angiogenesis. RNA sequencing shows that the cellular response to stretching is characterized by the upregulation of certain genes such as ANGPTL4+5, PDE1A, and PLEC.

4.
ACS Biomater Sci Eng ; 7(7): 2990-2997, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33651947

RESUMEN

Advanced in vitro models called "organ-on-a-chip" can mimic the specific cellular environment found in various tissues. Many of these models include a thin, sometimes flexible, membrane aimed at mimicking the extracellular matrix (ECM) scaffold of in vivo barriers. These membranes are often made of polydimethylsiloxane (PDMS), a silicone rubber that poorly mimics the chemical and physical properties of the basal membrane. However, the ECM and its mechanical properties play a key role in the homeostasis of a tissue. Here, we report about biological membranes with a composition and mechanical properties similar to those found in vivo. Two types of collagen-elastin (CE) membranes were produced: vitrified and nonvitrified (called "hydrogel membrane"). Their mechanical properties were characterized using the bulge test method. The results were compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young's modulus of soft materials at the nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The Young's modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces.


Asunto(s)
Matriz Extracelular , Dispositivos Laboratorio en un Chip , Membrana Celular , Módulo de Elasticidad , Humanos , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA