Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Chemosphere ; 359: 142257, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719116

The accurate prediction of standard vaporization enthalpy (ΔvapHm°) for volatile organic compounds (VOCs) is of paramount importance in environmental chemistry, industrial applications and regulatory compliance. To overcome traditional experimental methods for predicting ΔvapHm° of VOCs, machine learning (ML) models enable a high-throughput, cost-effective property estimation. But despite a rising momentum, existing ML algorithms still present limitations in prediction accuracy and broad chemical applications. In this work, we present a data driven, explainable supervised ML model to predict ΔvapHm° of VOCs. The model was built on an established experimental database of 2410 unique molecules and 223 VOCs categorized by chemical groups. Using supervised ML regression algorithms, the Random Forest successfully predicted VOCs' ΔvapHm° with a mean absolute error of 3.02 kJ mol-1 and a 95% test score. The model was successfully validated through the prediction of ΔvapHm° for a known database of VOCs and through molecular group hold-out tests. Through chemical feature importance analysis, this explainable model revealed that VOC polarizability, connectivity indexes and electrotopological state are key for the model's prediction accuracy. We thus present a replicable and explainable model, which can be further expanded towards the prediction of other thermodynamic properties of VOCs.

2.
J Chem Inf Model ; 64(7): 2250-2262, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-37603608

Many challenges persist in developing accurate computational models for predicting solvation free energy (ΔGsol). Despite recent developments in Machine Learning (ML) methodologies that outperformed traditional quantum mechanical models, several issues remain concerning explanatory insights for broad chemical predictions with an acceptable speed-accuracy trade-off. To overcome this, we present a novel supervised ML model to predict the ΔGsol for an array of solvent-solute pairs. Using two different ensemble regressor algorithms, we made fast and accurate property predictions using open-source chemical features, encoding complex electronic, structural, and surface area descriptors for every solvent and solute. By integrating molecular properties and chemical interaction features, we have analyzed individual descriptor importance and optimized our model though explanatory information form feature groups. On aqueous and organic solvent databases, ML models revealed the predictive relevance of solutes with increasing polar surface area and decreasing polarizability, yielding better results than state-of-the-art benchmark Neural Network methods (without complex quantum mechanical or molecular dynamic simulations). Both algorithms successfully outperformed previous ΔGsol predictions methods, with a maximum absolute error of 0.22 ± 0.02 kcal mol-1, further validated in an external benchmark database and with solvent hold-out tests. With these explanatory and statistical insights, they allow a thoughtful application of this method for predicting other thermodynamic properties, stressing the relevance of ML modeling for further complex computational chemistry problems.


Supervised Machine Learning , Water , Solvents/chemistry , Water/chemistry , Solutions , Thermodynamics
3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article En | MEDLINE | ID: mdl-37569673

The catalytic epoxidation of small alkenes and allylic alcohols includes a wide range of valuable chemical applications, with many works describing vanadium complexes as suitable catalysts towards sustainable process chemistry. But, given the complexity of these mechanisms, it is not always easy to sort out efficient examples for streamlining sustainable processes and tuning product optimization. In this review, we provide an update on major works of tunable vanadium-catalyzed epoxidations, with a focus on sustainable optimization routes. After presenting the current mechanistic view on vanadium catalysts for small alkenes and allylic alcohols' epoxidation, we argue the key challenges in green process development by highlighting the value of updated kinetic and mechanistic studies, along with essential computational studies.


Alkenes , Vanadium , Alkenes/chemistry , Vanadium/chemistry , Epoxy Compounds/chemistry , Stereoisomerism , Propanols/chemistry , Catalysis , Alcohols/chemistry
...