Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
PLoS One ; 17(1): e0261960, 2022.
Article En | MEDLINE | ID: mdl-35030226

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the 'relaxation' property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Acetylcholine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Adenosine/pharmacology , Ion Channel Gating/drug effects , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Receptor, Adenosine A1/metabolism , Animals , Female , Guinea Pigs , Male , Receptor, Muscarinic M2/agonists , Receptor, Muscarinic M2/metabolism
2.
J Gen Physiol ; 153(5)2021 05 03.
Article En | MEDLINE | ID: mdl-33822868

Inwardly rectifying potassium (Kir) channels are broadly expressed in both excitable and nonexcitable tissues, where they contribute to a wide variety of cellular functions. Numerous studies have established that rectification of Kir channels is not an inherent property of the channel protein itself, but rather reflects strong voltage dependence of channel block by intracellular cations, such as polyamines and Mg2+. Here, we identify a previously unknown mechanism of inward rectification in Kir4.1/Kir5.1 channels in the absence of these endogenous blockers. This novel intrinsic rectification originates from the voltage-dependent behavior of Kir4.1/Kir5.1, which is generated by the flux of potassium ions through the channel pore; the inward K+-flux induces the opening of the gate, whereas the outward flux is unable to maintain the gate open. This gating mechanism powered by the K+-flux is convergent with the gating of PIP2 because, at a saturating concentration, PIP2 greatly reduces the inward rectification. Our findings provide evidence of the coexistence of two rectification mechanisms in Kir4.1/Kir5.1 channels: the classical inward rectification induced by blocking cations and an intrinsic voltage-dependent mechanism generated by the K+-flux gating.


Potassium Channels, Inwardly Rectifying , Ions , Potassium , Potassium Channel Blockers
3.
Eur J Pharmacol ; 899: 174026, 2021 May 15.
Article En | MEDLINE | ID: mdl-33722592

Riluzole is an anticonvulsant drug also used to treat the amyotrophic lateral sclerosis and major depressive disorder. This compound has antiglutamatergic activity and is an important multichannel blocker. However, little is known about its actions on the Kv4.2 channels, the molecular correlate of the A-type K+ current (IA) and the fast transient outward current (Itof). Here, we investigated the effects of riluzole on Kv4.2 channels transiently expressed in HEK-293 cells. Riluzole inhibited Kv4.2 channels with an IC50 of 190 ± 14 µM and the effect was voltage- and frequency-independent. The activation rate of the current (at +50 mV) was not affected by the drug, nor the voltage dependence of channel activation, but the inactivation rate was accelerated by 100 and 300 µM riluzole. When Kv4.2 channels were maintained at the closed state, riluzole incubation induced a tonic current inhibition. In addition, riluzole significantly shifted the voltage dependence of inactivation to hyperpolarized potentials without affecting the recovery from inactivation. In the presence of the drug, the closed-state inactivation was significantly accelerated, and the percentage of inactivated channels was increased. Altogether, our findings indicate that riluzole inhibits Kv4.2 channels mainly affecting the closed and closed-inactivated states.


Potassium Channel Blockers/pharmacology , Riluzole/pharmacology , Shal Potassium Channels/antagonists & inhibitors , HEK293 Cells , Humans , Ion Channel Gating , Membrane Potentials , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Time Factors
4.
Acta Pharm ; 71(2): 317-324, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33151169

Terfenadine is a second-generation H1-antihistamine that despite potentially can produce severe side effects it has recently gained attention due to its anticancer properties. Lately, the subfamily 2 of inward rectifier potassium channels (Kir2) has been implicated in the progression of some tumoral processes. Hence, we characterized the effects of terfenadine on Kir2.x channels expressed in HEK-293 cells. Terfenadine inhibited Kir2.3 channels with a strikingly greater potency (IC50 = 1.06 ± 0.11 µmol L-1) compared to Kir2.1 channels (IC50 = 27.8 ± 4.8 µmol L-1). The Kir2.3(I213L) mutant, possessing a larger affinity for phosphatidylinositol 4,5-bisphosphate (PIP2) than the wild-type Kir2.3, was less sensitive to terfenadine inhibition (IC50 = 13.0 ± 2.9 µmol L-1). Additionally, the PIP2 intracellular application had largely reduced the inhibition of Kir2.1 channels by terfenadine. Our data support that Kir2.x channels are targets of terfena-dine by affecting their interaction with PIP2, which could be regarded as a mechanism of the antitumor properties of terfenadine.


Histamine H1 Antagonists, Non-Sedating/pharmacology , Potassium Channels, Inwardly Rectifying/drug effects , Terfenadine/pharmacology , HEK293 Cells , Histamine H1 Antagonists, Non-Sedating/administration & dosage , Humans , Inhibitory Concentration 50 , Potassium Channels, Inwardly Rectifying/metabolism , Terfenadine/administration & dosage
5.
Biochem Pharmacol ; 177: 113961, 2020 07.
Article En | MEDLINE | ID: mdl-32272111

It has been reported that muscarinic type-2 receptors (M2R) are voltage sensitive in an agonist-specific manner. In this work, we studied the effects of membrane potential on the interaction of M2R with the superagonist iperoxo (IXO), both functionally (using the activation of the ACh-gated K+ current (IKACh) in cardiomyocytes) and by molecular dynamics (MD) simulations. We found that IXO activated IKACh with remarkable high potency and clear voltage dependence, displaying a larger effect at the hyperpolarized potential. This result is consistent with a greater affinity, as validated by a slower (τ = 14.8 ± 2.3 s) deactivation kinetics of the IXO-evoked IKACh than that at the positive voltage (τ = 6.7 ± 1.2 s). The voltage-dependent M2R-IXO interaction induced IKACh to exhibit voltage-dependent features of this current, such as the 'relaxation gating' and the modulation of rectification. MD simulations revealed that membrane potential evoked specific conformational changes both at the external access and orthosteric site of M2R that underlie the agonist affinity change provoked by voltage on M2R. Moreover, our experimental data suggest that the 'tyrosine lid' (Y104, Y403, and Y426) is not the previously proposed voltage sensor of M2R. These findings provide an insight into the structural and functional framework of the biased signaling induced by voltage on GPCRs.


Ion Channel Gating/drug effects , Isoxazoles/pharmacology , Molecular Dynamics Simulation , Quaternary Ammonium Compounds/pharmacology , Receptor, Muscarinic M2/physiology , Acetylcholine/pharmacology , Animals , Cats , Cells, Cultured , Electric Stimulation , Female , Ion Channel Gating/physiology , Male , Membrane Potentials/drug effects , Models, Molecular , Muscarinic Agonists/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Protein Conformation , Receptor, Muscarinic M2/chemistry , Receptor, Muscarinic M2/metabolism , Xenopus laevis
6.
Biochem Pharmacol ; 152: 264-271, 2018 06.
Article En | MEDLINE | ID: mdl-29621539

Amitriptyline (AMIT) is a compound widely prescribed for psychiatric and non-psychiatric conditions including depression, migraine, chronic pain, and anorexia. However, AMIT has been associated with risks of cardiac arrhythmia and sudden death since it can induce prolongation of the QT interval on the surface electrocardiogram and torsade de pointes ventricular arrhythmia. These complications have been attributed to the inhibition of the rapid delayed rectifier potassium current (IKr). The slow delayed rectifier potassium current (IKs) is the main repolarizing cardiac current when IKr is compromised and it has an important role in cardiac repolarization at fast heart rates induced by an elevated sympathetic tone. Therefore, we sought to characterize the effects of AMIT on Kv7.1/KCNE1 and homomeric Kv7.1 channels expressed in HEK-293H cells. Homomeric Kv7.1 and Kv7.1/KCNE1 channels were inhibited by AMIT in a concentration-dependent manner with IC50 values of 8.8 ±â€¯2.1 µM and 2.5 ±â€¯0.8 µM, respectively. This effect was voltage-independent for both homomeric Kv7.1 and Kv7.1/KCNE1 channels. Moreover, mutation of residues located on the P-loop and S6 domain along with molecular docking, suggest that T312, I337 and F340 are the most important molecular determinants for AMIT-Kv7.1 channel interaction. Our experimental findings and modeling suggest that AMIT preferentially blocks the open state of Kv7.1/KCNE1 channels by interacting with specific residues that were previously reported to be important for binding of other compounds, such as chromanol 293B and the benzodiazepine L7.


Amitriptyline/pharmacology , KCNQ1 Potassium Channel/antagonists & inhibitors , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Action Potentials , Amitriptyline/chemistry , Antidepressive Agents, Tricyclic/chemistry , Antidepressive Agents, Tricyclic/pharmacology , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , KCNQ1 Potassium Channel/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Potassium Channels, Voltage-Gated/metabolism , Protein Conformation
7.
Brain Res ; 1663: 87-94, 2017 05 15.
Article En | MEDLINE | ID: mdl-28288868

Inwardly rectifying potassium (Kir) channels are expressed in many cell types and contribute to a wide range of physiological processes. Particularly, Kir4.1 channels are involved in the astroglial spatial potassium buffering. In this work, we examined the effects of the cationic amphiphilic drug quinacrine on Kir4.1 channels heterologously expressed in HEK293 cells, employing the patch clamp technique. Quinacrine inhibited the currents of Kir4.1 channels in a concentration and voltage dependent manner. In inside-out patches, quinacrine inhibited Kir4.1 channels with an IC50 value of 1.8±0.3µM and with extremely slow blocking and unblocking kinetics. Molecular modeling combined with mutagenesis studies suggested that quinacrine blocks Kir4.1 by plugging the central cavity of the channels, stabilized by the residues E158 and T128. Overall, this study shows that quinacrine blocks Kir4.1 channels, which would be expected to impact the potassium transport in several tissues.


Potassium Channels, Inwardly Rectifying/drug effects , Potassium Channels, Inwardly Rectifying/metabolism , Quinacrine/pharmacology , Animals , Astrocytes/metabolism , HEK293 Cells , Humans , Ion Channel Gating/physiology , Patch-Clamp Techniques/methods , Potassium/metabolism , Potassium Channels/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Quinacrine/metabolism , Rats
8.
Eur J Pharmacol ; 800: 40-47, 2017 Apr 05.
Article En | MEDLINE | ID: mdl-28216048

Kir4.1 channels have been implicated in various physiological processes, mainly in the K+ homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch-clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK-293 cells. CQ produced a fast-onset voltage-dependent pore-blocking effect on these channels. In inside-out patches, CQ showed notable higher potency (IC50 ≈0.5µM at +50mV) and faster onset of block when compared to whole-cell configuration (IC50 ≈7µM at +60mV). Also, CQ showed a voltage-dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore-plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ-Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.


Chloroquine/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/chemistry , Binding Sites , Chloroquine/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Kinetics , Molecular Docking Simulation , Porosity , Potassium Channel Blockers/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Protein Conformation
9.
J Pharmacol Toxicol Methods ; 69(3): 237-44, 2014.
Article En | MEDLINE | ID: mdl-24412489

INTRODUCTION: Voltage- and state-dependent blocks are important mechanisms by which drugs affect voltage-gated ionic channels. However, spontaneous (i.e. drug-free) time-dependent changes in the activation and inactivation of hERG and Na(+) channels have been reported when using conventional whole-cell patch-clamp in HEK-293 cells. METHODS: hERG channels were heterologously expressed in HEK-293 cells and in Xenopus laevis oocytes. hERG current (IhERG) was recorded using both conventional and perforated whole-cell patch-clamp (HEK-293 cells), and two microelectrode voltage-clamp (Xenopus oocytes) in drug-free solution, and in the presence of the drug trazodone. RESULTS: In conventional whole-cell setup, we observed a spontaneous time-dependent hyperpolarizing shift in the activation curve of IhERG. Conversely, in perforated patch whole-cell (HEK-293 cells) or in two microelectrode voltage-clamp (Xenopus oocytes) activation curves of IhERG were very stable for periods ~50min. Voltage-dependent inactivation of IhERG was not significantly altered in the three voltage clamp configurations tested. When comparing voltage- and state-dependent effects of the antidepressant drug trazodone on IhERG, similar changes between the three voltage clamp configurations were observed as under drug-free conditions. DISCUSSION: The comparative analysis performed in this work showed that only under conventional whole-cell voltage-clamp conditions, a leftward shift in the activation curve of IhERG occurred, both in the presence and absence of drugs. These spontaneous time-dependent changes in the voltage activation gate of IhERG are a potential confounder in pharmacological studies on hERG channels expressed in HEK-293 cells.


Ether-A-Go-Go Potassium Channels/drug effects , Patch-Clamp Techniques/methods , Trazodone/pharmacology , Animals , Antidepressive Agents, Second-Generation , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , Humans , Oocytes , Time Factors , Xenopus laevis
10.
PLoS Biol ; 11(12): e1001727, 2013 Dec.
Article En | MEDLINE | ID: mdl-24311987

The 3-O-sulfotransferase (3-OST) family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4) expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.


Bone Morphogenetic Proteins/physiology , Myocardial Contraction/physiology , Sulfotransferases/physiology , Zebrafish Proteins/physiology , Action Potentials/physiology , Animals , Gene Knockdown Techniques , Muscle Development/physiology , Myocytes, Cardiac/physiology , Sarcomeres/physiology , Signal Transduction/physiology , Tropomyosin/physiology , Zebrafish
11.
PLoS One ; 8(9): e76085, 2013.
Article En | MEDLINE | ID: mdl-24086693

KCNQ genes encode five Kv7 K(+) channel subunits (Kv7.1-Kv7.5). Four of these (Kv7.2-Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels.


KCNQ2 Potassium Channel/antagonists & inhibitors , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/antagonists & inhibitors , KCNQ3 Potassium Channel/metabolism , Tamoxifen/pharmacology , HEK293 Cells , Humans , Inhibitory Concentration 50 , KCNQ2 Potassium Channel/genetics , Mutation, Missense/genetics , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
12.
Mol Pharmacol ; 82(5): 803-13, 2012 Nov.
Article En | MEDLINE | ID: mdl-22851715

Chloroquine and related compounds can inhibit inwardly rectifying potassium channels by multiple potential mechanisms, including pore block and allosteric effects on channel gating. Motivated by reports that chloroquine inhibition of cardiac ATP-sensitive inward rectifier K(+) current (I(KATP)) is antifibrillatory in rabbit ventricle, we investigated the mechanism of chloroquine inhibition of ATP-sensitive potassium (K(ATP)) channels (Kir6.2/SUR2A) expressed in human embryonic kidney 293 cells, using inside-out patch-clamp recordings. We found that chloroquine inhibits the Kir6.2/SUR2A channel by interacting with at least two different sites and by two mechanisms of action. A fast-onset effect is observed at depolarized membrane voltages and enhanced by the N160D mutation in the central cavity, probably reflecting direct channel block resulting from the drug entering the channel pore from the cytoplasmic side. Conversely, a slow-onset, voltage-independent inhibition of I(KATP) is regulated by chloroquine interaction with a different site and probably involves disruption of interactions between Kir6.2/SUR2A and phosphatidylinositol 4,5-bisphosphate. Our findings reveal multiple mechanisms of K(ATP) channel inhibition by chloroquine, highlighting the numerous convergent regulatory mechanisms of these ligand-dependent ion channels.


ATP-Binding Cassette Transporters/antagonists & inhibitors , Antimalarials/pharmacology , Chloroquine/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Receptors, Drug/antagonists & inhibitors , Animals , Binding Sites , HEK293 Cells , Humans , Mice , Mutation , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Potassium Channels, Inwardly Rectifying/genetics , Spermine/pharmacology , Sulfonylurea Receptors , Transfection
13.
Heart Rhythm ; 9(4): 548-55, 2012 Apr.
Article En | MEDLINE | ID: mdl-22056721

BACKGROUND: Adenosine triphosphate (ATP)-sensitive potassium cardiac channels consist of inward-rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). OBJECTIVE: To examine the association of mutations in KCNJ8 with Brugada syndrome (BrS) and early repolarization syndrome (ERS) and to elucidate the mechanism underlying the gain of function of ATP-sensitive potassium channel current. METHODS: Direct sequencing of KCNJ8 and other candidate genes was performed on 204 BrS and ERS probands and family members. Whole-cell and inside-out patch-clamp methods were used to study mutated channels expressed in TSA201 cells. RESULTS: The same missense mutation, p.Ser422Leu (c.1265C>T) in KCNJ8, was identified in 3 BrS and 1 ERS probands but was absent in 430 alleles from ethnically matched healthy controls. Additional genetic variants included CACNB2b-D601E. Whole-cell patch-clamp studies showed a 2-fold gain of function of glibenclamide-sensitive ATP-sensitive potassium channel current when KCNJ8-S422L was coexpressed with SUR2A-wild type. Inside-out patch-clamp evaluation yielded a significantly greater half maximal inhibitory concentration for ATP in the mutant channels (785.5 ± 2 vs 38.4 ± 3 µM; n = 5; P <.01), pointing to incomplete closing of the ATP-sensitive potassium channels under normoxic conditions. Patients with a CACNB2b-D601E polymorphism displayed longer QT/corrected QT intervals, likely owing to their effect to induce an increase in L-type calcium channel current (I(Ca-L)). CONCLUSIONS: Our results support the hypothesis that KCNJ8 is a susceptibility gene for BrS and ERS and point to S422L as a possible hotspot mutation. Our findings suggest that the S422L-induced gain of function in ATP-sensitive potassium channel current is due to reduced sensitivity to intracellular ATP.


Brugada Syndrome/genetics , Death, Sudden, Cardiac/epidemiology , KATP Channels/genetics , Molecular Biology , Mutation, Missense/genetics , Tachycardia, Ventricular/genetics , Adult , Aged , Female , France/epidemiology , Humans , Male , Middle Aged , Statistics as Topic , Syndrome , Tachycardia, Ventricular/epidemiology , Young Adult
14.
J Biol Chem ; 286(45): 39091-9, 2011 Nov 11.
Article En | MEDLINE | ID: mdl-21908602

Emerging evidence suggests that K(+) channel inactivation involves coupling between residues in adjacent regions of the channel. Human ether-a-go-go-related gene-1 (hERG1) K(+) channels undergo a fast inactivation gating process that is crucial for maintaining electrical stability in the heart. The molecular mechanisms that drive inactivation in hERG1 channels are unknown. Using alanine scanning mutagenesis, we show that a pore helix residue (Thr-618) that points toward the S5 segment is critical for normal inactivation gating. Amino acid substitutions at position 618 modulate the free energy of inactivation gating, causing enhanced or reduced inactivation. Mutation of an S5 residue that is predicted to be adjacent to Thr-618 (W568L) abolishes inactivation and alters ion selectivity. The introduction of the Thr-618-equivalent residue in Kv1.5 enhances inactivation. Molecular dynamic simulations of the Kv1.2 tetramer reveal van der Waals coupling between hERG1 618- and 568-equivalent residues and a significant increase in interaction energies when threonine is introduced at the 618-equivalent position. We propose that coupling between the S5 segment and pore helix may participate in the inactivation process in hERG1 channels.


Ether-A-Go-Go Potassium Channels/metabolism , Ion Channel Gating/physiology , Muscle Proteins/metabolism , Amino Acid Substitution , Animals , Ether-A-Go-Go Potassium Channels/genetics , Humans , Models, Molecular , Muscle Proteins/genetics , Mutagenesis , Mutation, Missense , Myocardium/metabolism , Protein Structure, Secondary , Xenopus laevis
15.
Eur J Pharmacol ; 668(1-2): 72-7, 2011 Oct 01.
Article En | MEDLINE | ID: mdl-21663737

Carvedilol, a ß- and α-adrenoceptor blocker, is used to treat congestive heart failure, mild to moderate hypertension, and myocardial infarction. It has been proposed to block K(ATP) channels by binding to the bundle crossing region at a domain including cysteine at position 166, and thereby plugging the pore region. However, carvedilol was reported not to affect Kir2.1 channels, which lack 166 Cys. Here, we demonstrate that carvedilol inhibits Kir2.3 carried current by an alternative mechanism. Carvedilol inhibited Kir2.3 channels with at least 100 fold higher potency (IC(50)=0.49 µM) compared to that for Kir2.1 (IC(50)>50 µM). Kir2.3 channel inhibition was concentration-dependent and voltage-independent. Increasing Kir2.3 channel affinity for PIP(2), by a I213L point mutation, decreased the inhibitory effect of carvedilol more than twentyfold (IC(50)=11.1 µM). In the presence of exogenous PIP(2), Kir2.3 channel inhibition by carvedilol was strongly reduced (80 vs. 2% current inhibition). These results suggest that carvedilol, as other cationic amphiphilic drugs, inhibits Kir2.3 channels by interfering with the PIP(2)-channel interaction.


Carbazoles/pharmacology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Propanolamines/pharmacology , Carvedilol , HEK293 Cells , Humans , Point Mutation , Potassium Channels, Inwardly Rectifying/genetics , Protein Binding/drug effects
16.
J Cardiovasc Pharmacol ; 57(4): 407-15, 2011 Apr.
Article En | MEDLINE | ID: mdl-21502926

The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 µM) > Kir2.1 (IC50 > 30 µM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 µM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.


Antimalarials/pharmacology , Mefloquine/pharmacology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Animals , Antimalarials/administration & dosage , Cats , HEK293 Cells , Humans , Inhibitory Concentration 50 , KATP Channels/antagonists & inhibitors , Mefloquine/administration & dosage , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Potassium Channel Blockers/administration & dosage , Potassium Channel Blockers/pharmacology
17.
Eur J Pharmacol ; 638(1-3): 33-41, 2010 Jul 25.
Article En | MEDLINE | ID: mdl-20447386

Thiopental is a well-known intravenous barbiturate anesthetic with important cardiac side effects. The actions of thiopental on the transmembrane ionic currents that determine the resting potential and action potential duration in cardiomyocytes have been studied widely. We aimed at elucidating the characteristics and mechanism of inhibition by thiopental on members of the subfamily of inward rectifying Kir2.x (Kir2.1, 2.2 and 2.3), Kir1.1 and Kir6.2/SUR2A channels. These inward rectifier potassium channels were transfected in HEK-293 cells and macroscopic currents were recorded in the whole-cell and inside-out configurations of the patch-clamp technique. Thiopental inhibited Kir2.1, Kir2.2, Kir2.3, Kir1.1 and Kir6.2/SUR2A currents with similar potency; in whole-cell experiments 30 microM thiopental decreased Kir2.1, Kir2.2, Kir2.3 and Kir1.1 currents to 55+/-6, 39+/-8, 42+/-5 and 49+/-5% at -120 mV, respectively. Point mutations on Kir2.3 (I213L) or Kir2.1 (L222I) did not modify the potency of block. Thiopental inhibited all Kir channels in a concentration-dependent and voltage-independent manner. Also, the time course of thiopental inhibition was slow (T(1/2) approximately 4 min) and independent of external or internal drug application. However, in the presence of PIP(2), inhibition by thiopental on Kir2.1 was significantly decreased. Thiopental at clinically relevant concentrations significantly inhibited all Kir channels evaluated in this work. The reduction of thiopental effects during PIP(2) treatment suggests that thiopental inhibition on Kir2.1 channels is related to channel-PIP(2) interaction.


Membrane Potentials/drug effects , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Thiopental/pharmacology , Cell Line, Transformed , Dose-Response Relationship, Drug , Drug Interactions , Humans , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Point Mutation , Potassium Channels, Inwardly Rectifying/genetics , Protein Isoforms , Thiopental/antagonists & inhibitors
18.
J Pharmacol Sci ; 113(1): 66-75, 2010.
Article En | MEDLINE | ID: mdl-20472984

Tamoxifen inhibits transmembrane currents of the Kir2.x inward rectifier potassium channels by interfering with the interaction of the channels with membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)). We tested the hypothesis that Kir channels with low affinity for PIP(2), like the adenosine triphosphate (ATP)-sensitive K(+) channel (K(ATP)) and acetylcholine (ACh)-activated K(+) channel (K(ACh)), have at least the same sensitivity to tamoxifen as Kir2.3. We investigated the effects of tamoxifen (0.1 - 10 microM) on Kir6.2/SUR2A (K(ATP)) and Kir3.1/3.4 (K(ACh)) channels expressed in HEK-293 cells and ATP-sensitive K(+) current (I(KATP)) and ACh-activated K(+) current (I(KACh)) in feline atrial myocytes. The onset of tamoxifen inhibition of both I(KATP) and I(KACh) was slow (T(1/2) approximately 3.5 min) and concentration-dependent but voltage-independent. The time course and degree of inhibition was independent of external or internal drug application. Tamoxifen interacts with the pore forming subunit, Kir6.2, rather than with the SUR subunit. The inhibitory potency of tamoxifen on the Kir6.2/SUR2A channel was decreased by the mutation (C166S) on Kir6.2 and in the continuous presence of PIP(2). In atrial myocytes, the mechanism and potency of the effects of tamoxifen on K(ATP) and K(ACh) channels were comparable to those in HEK-293 cells. These data suggest that, similar to its effects on Kir2.x currents, tamoxifen inhibits K(ATP) and K(ACh) currents by interfering with the interaction between the channel and PIP(2).


G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects , KATP Channels/drug effects , Membrane Potentials/drug effects , Phosphatidylinositol Phosphates/pharmacology , Tamoxifen/pharmacology , Animals , Cats , Cell Line , Dose-Response Relationship, Drug , Drug Interactions , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Humans , KATP Channels/genetics , Membrane Potentials/genetics , Mutagenesis, Site-Directed/methods , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate , Tamoxifen/antagonists & inhibitors
19.
Cell Physiol Biochem ; 24(3-4): 153-60, 2009.
Article En | MEDLINE | ID: mdl-19710529

Short QT Syndrome (SQTS) is a novel clinical entity characterized by markedly rapid cardiac repolarization and lethal arrhythmias. A mutation in the Kir2.1 inward rectifier K+ channel (D172N) causes one form of SQTS (SQT3). Pharmacologic block of Kir2.1 channels may hold promise as potential therapy for SQT3. We recently reported that the anti-malarial drug chloroquine blocks Kir2.1 channels by plugging the cytoplasmic pore domain. In this study, we tested whether chloroquine blocks D172N Kir2.1 channels in a heterologous expression system and if chloroquine normalizes repolarization properties using a mathematical model of a human ventricular myocyte. Chloroquine caused a dose- and voltage-dependent reduction in wild-type (WT), D172N and WT-D172N heteromeric Kir2.1 current. The potency and kinetics of chloroquine block of D172N and WT-D172N Kir2.1 current were similar to WT. In silico modeling of the heterozygous WT-D172N Kir2.1 condition predicted that 3 microM chloroquine normalized inward rectifier K+ current magnitude, action potential duration and effective refractory period. Our results suggest that therapeutic concentrations of chloroquine might lengthen cardiac repolarization in SQT3.


Antimalarials/pharmacology , Chloroquine/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/genetics , Action Potentials/drug effects , Action Potentials/genetics , Cell Line , Computer Simulation , Dose-Response Relationship, Drug , Electrophysiology , Heart Ventricles/cytology , Humans , Kidney/cytology , Membrane Potentials/drug effects , Membrane Potentials/genetics , Membrane Potentials/physiology , Models, Statistical , Mutation/drug effects , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/physiology , Refractory Period, Electrophysiological/drug effects
20.
J Pharmacol Exp Ther ; 331(2): 563-73, 2009 Nov.
Article En | MEDLINE | ID: mdl-19654266

Tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits the inward rectifier potassium current (I(K1)) in cardiac myocytes by an unknown mechanism. We characterized the inhibitory effects of tamoxifen on Kir2.1, Kir2.2, and Kir2.3 potassium channels that underlie cardiac I(K1). We also studied the effects of 4-hydroxytamoxifen and raloxifene. All three drugs inhibited inward rectifier K(+) 2.x (Kir2.x) family members. The order of inhibition for all three drugs was Kir2.3 > Kir2.1 approximately Kir2.2. The onset of inhibition of Kir2.x current by these compounds was slow (T(1/2) approximately 6 min) and only partially recovered after washout ( approximately 30%). Kir2.x inhibition was concentration-dependent but voltage-independent. The time course and degree of inhibition was independent of external or internal drug application. We tested the hypothesis that tamoxifen interferes with the interaction between the channel and the membrane-delimited channel activator, phosphatidylinositol 4,5-bisphosphate (PIP(2)). Inhibition of Kir2.3 currents was significantly reduced by a single point mutation of I213L, which enhances Kir2.3 interaction with membrane PIP(2). Pretreatment with PIP(2) significantly decreased the inhibition induced by tamoxifen, 4-hydroxytamoxifen, and raloxifene on Kir2.3 channels. Pretreatment with spermine (100 microM) decreased the inhibitory effect of tamoxifen on Kir2.1, probably by strengthening the channel's interaction with PIP(2). In cat atrial and ventricular myocytes, 3 microM tamoxifen inhibited I(K1), but the effect was greater in the former than the latter. The data strongly suggest that tamoxifen, its metabolite, and the estrogen receptor inhibitor raloxifene inhibit Kir2.x channels indirectly by interfering with the interaction between the channel and PIP(2).


Estrogen Antagonists/pharmacology , Ion Channels/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Tamoxifen/pharmacology , Animals , Cats , Cell Line , Chloroquine/pharmacology , Electrophysiology , Heart Atria/metabolism , Heart Ventricles/metabolism , Humans , Ion Channel Gating/drug effects , Ion Channels/drug effects , Kinetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/genetics , Raloxifene Hydrochloride/pharmacology , Transfection
...