Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 8: 629740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829032

RESUMEN

The assembly of the newborn's gut microbiota during the first months of life is an orchestrated process resulting in specialized microbial ecosystems in the different gut compartments. This process is highly dependent upon environmental factors, and many evidences suggest that early bacterial gut colonization has long-term consequences on host digestive and immune homeostasis but also metabolism and behavior. The early life period is therefore a "window of opportunity" to program health through microbiota modulation. However, the implementation of this promising strategy requires an in-depth understanding of the mechanisms governing gut microbiota assembly. Breastfeeding has been associated with a healthy microbiota in infants. Human milk is a complex food matrix, with numerous components that potentially influence the infant microbiota composition, either by enhancing specific bacteria growth or by limiting the growth of others. The objective of this review is to describe human milk composition and to discuss the established or purported roles of human milk components upon gut microbiota establishment. Finally, the impact of maternal diet on human milk composition is reviewed to assess how maternal diet could be a simple and efficient approach to shape the infant gut microbiota.

2.
Nutrients ; 12(7)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708852

RESUMEN

The early life period is crucial for the maturation of the intestinal barrier, its immune system, and a life-long beneficial host-microbiota interaction. The study aims to assess the impact of a beneficial dietary (short-chain fructooligosaccharides, scFOS) supplementation vs. a detrimental dietary environment (such as mycotoxin deoxynivalenol, DON) on offspring intestinal immune system developmental profiles. Sows were given scFOS-supplemented or DON-contaminated diets during the last 4 weeks of gestation, whereas force-feeding piglets with DON was performed during the first week of offspring life. Intestinal antigen-presenting cell (APC) subset frequency was analyzed by flow cytometry in the Peyer's patches and in lamina propria and the responsiveness of intestinal explants to toll-like receptor (TLR) ligands was performed using ELISA and qRT-PCR from post-natal day (PND) 10 until PND90. Perinatal exposure with scFOS did not affect the ontogenesis of APC. While it early induced inflammatory responses in piglets, scFOS further promoted the T regulatory response after TLR activation. Sow and piglet DON contamination decreased CD16+ MHCII+ APC at PND10 in lamina propria associated with IFNγ inflammation and impairment of Treg response. Our study demonstrated that maternal prebiotic supplementation and mycotoxin contamination can modulate the mucosal immune system responsiveness of offspring through different pathways.


Asunto(s)
Contaminación de Alimentos/análisis , Sistema Inmunológico/metabolismo , Membrana Mucosa/metabolismo , Micotoxinas/toxicidad , Prebióticos/administración & dosificación , Alimentación Animal/análisis , Alimentación Animal/toxicidad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Citocinas/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Interferón gamma/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/efectos de los fármacos , Micotoxinas/administración & dosificación , Oligosacáridos/administración & dosificación , Embarazo , Preñez/efectos de los fármacos , Preñez/inmunología , Receptores de IgG/metabolismo , Porcinos , Tricotecenos/administración & dosificación , Tricotecenos/toxicidad
3.
Front Behav Neurosci ; 13: 161, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379533

RESUMEN

Psychological chronic stress is an important risk factor for major depressive disorder, of which consequences have been widely studied in rodent models. This work aimed at describing a pig model of chronic stress based on social isolation, environmental impoverishment and unpredictability. Three groups of animals of both sexes were constituted. Two were exposed to the psychosocial stressors while receiving (SF, n = 12) or not (SC, n = 22) the antidepressant fluoxetine, and a third group (NSC, n = 22) remained unstressed. Animals were observed in home pens and during dedicated tests to assess resignation and anxiety-like behaviors. Brain structure and function were evaluated via proton MRS and fMRI. Hippocampal molecular biology and immunodetection of cellular proliferation (Ki67+) and neuron maturation (DCX+) in the dentate gyrus were also performed. Salivary cortisol, fecal short-chain fatty acids (SCFAs), and various plasmatic and intestinal biomarkers were analyzed. Compared to NSC, SC animals showed more resignation (p = 0.019) and had a higher level of salivary cortisol (p = 0.020). SC brain responses to stimulation by a novel odor were lower, similarly to their hippocampal neuronal density (p = 0.015), cellular proliferation (p = 0.030), and hippocampal levels of BDNF and 5-HT1AR (p = 0.056 and p = 0.007, respectively). However, the number of DCX+ cells was higher in the ventral dentate gyrus in this group (p = 0.025). In addition, HOMA-IR was also higher (p < 0.001) and microbiota fermentation activity was lower (SCFAs, SC/NSC: p < 0.01) in SC animals. Fluoxetine partially or totally reversed several of these effects. Exposure to psychosocial stressors in the pig model induced effects consistent with the human and rodent literature, including resignation behavior and alterations of the HPA axis and hippocampus. This model opens the way to innovative translational research exploring the mechanisms of chronic stress and testing intervention strategies with good face validity related to human.

4.
FASEB J ; 33(1): 301-313, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975568

RESUMEN

Perinatal nutrition programs physiologic and metabolic functions, with consequences on the susceptibility to develop metabolic diseases in adulthood. The microbiota represents a key factor of such programming. We investigated whether perinatal prebiotic [short-chain fructooligosaccharides (scFOS)] supplementation improved adult metabolic health in association with microbiota changes in pigs used as human model. Sows were supplemented with scFOS or not during the end of gestation and the entire lactation, and offspring received scFOS accordingly during 1 mo after weaning. Pigs were then fed a standard diet for 5 mo, followed by a high-fat diet for 3 mo once adults. Perinatal scFOS supplementation induced a persistent modulation of the composition of the fecal microbiota in adulthood, notably by increasing the Prevotella genus. Meanwhile, scFOS animals displayed improved capacity to secrete glucagon-like peptide-1 and improved pancreas sensitivity to glucose without any changes in peripheral insulin sensitivity. Perinatal scFOS supplementation also increased ileal secretory IgA secretion and alkaline phosphatase activity and decreased TNF-α expression in adipose tissue. In conclusion, perinatal scFOS supplementation induced long-lasting modulation of intestinal microbiota and had beneficial consequences on the host physiology in adulthood. Our results highlight the key role of perinatal nutrition on later microbiota and host metabolic adaptation to an unbalanced diet.-Le Bourgot, C., Ferret-Bernard, S., Apper, E., Taminiau, B., Cahu, A., Le Normand, L., Respondek, F., Le Huërou-Luron, I., Blat, S. Perinatal short-chain fructooligosaccharides program intestinal microbiota and improve enteroinsular axis function and inflammatory status in high-fat diet-fed adult pigs.


Asunto(s)
Alimentación Animal/análisis , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/veterinaria , Enfermedades Intestinales/veterinaria , Oligosacáridos/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Suplementos Dietéticos , Heces/microbiología , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Inflamación/tratamiento farmacológico , Inflamación/etiología , Insulina/metabolismo , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/etiología , Embarazo , Porcinos , Enfermedades de los Porcinos/etiología
5.
Front Microbiol ; 9: 2584, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420848

RESUMEN

Propionibacterium freudenreichii is a beneficial bacterium, used as a cheese starter, which presents versatile probiotic properties. These properties are strain-dependent. We hypothesized they may also be delivery vehicle-dependent. In this study, we thus explored in healthy piglets how the cheese matrix affects the immunomodulatory properties of P. freudenreichii. During 2 weeks, three groups of weaned piglets consumed, respectively, P. freudenreichii as a liquid culture (PF-culture), P. freudenreichii under the form of a cheese (PF-cheese), or a control sterile cheese matrix (Cheese-matrix). The in vivo metabolic activity of P. freudenreichii was assessed by determining short chain fatty acids (SCFA) concentration and bifidobacteria population in feces. Whatever the delivery vehicle, P. freudenreichii was metabolically active in piglets' colon and enhanced both bifidobacteria and SCFA in feces. P. freudenreichii consumption decreased the secretion of TNFα and of IL-10 by peripheral blood mononuclear cells (PBMC). It did not alter IL-10, IFNγ, IL-17, and TNFα secretion in mesenteric lymph node immune cells (MLNC). PF-cheese enhanced significantly Treg phenotype, while PF-culture decreased significantly Th17 phenotype in PBMC and MLNC. Remarkably, only PF-cheese induced an increase of Th2 phenotype in PBMC and MLNC. Ex vivo stimulation of PBMC and MLNC by Lipopolysaccharides and Concanavalin A emphasized the difference in the immunomodulatory responses between PF-culture and PF-cheese group, as well as between PBMC and MLNC. This study shows the importance to consider the delivery vehicle for probiotic administration. It confirms the anti-inflammatory potential of P. freudenreichii. It opens new perspectives for the use propionibacteria-fermented products as preventive agents for inflammatory bowel diseases and intestinal infectious diseases.

6.
Sci Rep ; 8(1): 11656, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076313

RESUMEN

Clinical and animal studies have demonstrated beneficial effects of early consumption of dairy lipids and a probiotic, Lactobacillus fermentum (Lf), on infant gut physiology. The objective of this study was to investigate their long-term effects on gut microbiota and host entero-insular axis and metabolism. Piglets were suckled with a milk formula containing only plant lipids (PL), a half-half mixture of plant lipids and dairy lipids (DL), or this mixture supplemented with Lf (DL + Lf). They were weaned on a standard diet and challenged with a high-energy diet until postnatal day 140. DL and DL + Lf modulated gut microbiota composition and metabolism, increasing abundance of several Clostridia genera. Moreover, DL + Lf specifically decreased the faecal content of 2-oxoglutarate and lysine compared to PL and 5-aminovalerate compared to PL and DL. It also increased short-chain fatty acid concentrations like propionate compared to DL. Furthermore, DL + Lf had a beneficial effect on the endocrine function, enhancing caecal GLP-1 and GLP-1 meal-stimulated secretion. Correlations highlighted the consistent relationship between microbiota and gut physiology. Together, our results evidence a beneficial programming effect of DL + Lf in infant formula composition on faecal microbiota and entero-insular axis function.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Fórmulas Infantiles/química , Lípidos/administración & dosificación , Probióticos/administración & dosificación , Animales , Suplementos Dietéticos , Heces/microbiología , Humanos , Lactante , Limosilactobacillus fermentum/química , Lípidos/química , Leche/química , Probióticos/química , Porcinos , Porcinos Enanos
7.
Eur J Nutr ; 57(2): 463-476, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27744547

RESUMEN

PURPOSE: Although composition of infant formula has been significantly improved during the last decade, major differences with the composition and structure of breast milk still remain and might affect nutrient digestion and gut biology. We hypothesized that the incorporation of dairy fat in infant formulas could modify their physiological impacts by making their composition closer to that of human milk. The effect of milk fat and milk fat globule membrane (MFGM) fragments in infant formulas on gut digestion, mucosal immunity and microbiota composition was evaluated. METHODS: Three formulas containing either (1) vegetable lipids stabilized only by proteins (V-P), (2) vegetable lipids stabilized by a mixture of proteins and MFGM fragments (V-M) and (3) a mixture of milk and vegetable lipids stabilized by a mixture of proteins and MFGM fragments (M-M) were automatically distributed to 42 newborn piglets until slaughter at postnatal day (PND) 7 or 28, and compared to a fourth group of sow's suckling piglets (SM) used as a breast-fed reference. RESULTS: At both PND, casein and ß-lactoglobulin digestion was reduced in M-M proximal jejunum and ileum contents compared to V-P and V-M ones leading to more numerous ß-Cn peptides in M-M contents. The IFNγ cytokine secretion of ConA-stimulated MLN cells from M-M piglets tended to be higher than in V-P ones at PND 7 and PND 28 and was closer to that of SM piglets. No dietary treatment effect was observed on IL-10 MLN cell secretion. Changes in faecal microbiota in M-M piglets resulted in an increase in Proteobacteria and Bacteroidetes and a decrease in Firmicutes phyla compared to V-P ones. M-M piglets showed higher abundances of Parabacteroides, Escherichia/Shigella and Klebsiella genus. CONCLUSIONS: The incorporation of both milk fat and MFGM fragments in infant formula modifies protein digestion, the dynamic of the immune system maturation and the faecal microbiota composition.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa , Inmunomodulación , Leche/química , Modelos Inmunológicos , Aceites de Plantas/administración & dosificación , Animales , Animales Recién Nacidos , Caseínas/administración & dosificación , Caseínas/metabolismo , Citocinas/metabolismo , Digestión , Heces/microbiología , Contenido Digestivo/química , Contenido Digestivo/microbiología , Glucolípidos/administración & dosificación , Glucolípidos/metabolismo , Glicoproteínas/administración & dosificación , Glicoproteínas/metabolismo , Humanos , Fórmulas Infantiles , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Lactoglobulinas/administración & dosificación , Lactoglobulinas/metabolismo , Gotas Lipídicas , Ganglios Linfáticos/crecimiento & desarrollo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Leche/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Vegetales Comestibles/administración & dosificación , Proteínas de Vegetales Comestibles/metabolismo , Sus scrofa/crecimiento & desarrollo
8.
Br J Nutr ; 117(1): 83-92, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115029

RESUMEN

Prebiotic supplementation modulates immune system development and function. However, less is known about the effects of maternal prebiotic consumption on offspring intestinal defences and immune system responsiveness. We investigated the effects of maternal short-chain fructo-oligosaccharide (scFOS) supplementation on mucin-secreting cells, ileal secretory IgA and cytokine secretion of weaned offspring and their humoral response to an oral vaccine against obligate intracellular Lawsonia intracellularis. Sows were fed a control diet (CTRL) or scFOS-supplemented diet during the last third of gestation and throughout lactation. At weaning, each litter was divided into two groups receiving a post-weaning CTRL or scFOS diet for a month. Pigs from the four groups were either non-vaccinated (n 16) or vaccinated (n 117) at day 33. Biomarkers related to intestinal defences and immune parameters were analysed 3 weeks later. SCFA production was assessed over time in suckling and weaned pigs. Maternal scFOS supplementation improved ileal cytokine secretions (interferon (IFN)-γ, P<0·05; IL-4, P=0·07) and tended to increase caecal goblet cell number (P=0·06). It increased IgA vaccine response in the serum (P<0·01) and ileal mucosa (P=0·08). Higher bacterial fermentative activity was observed during lactation (total faecal SCFA, P<0·001) and after weaning (colonic butyrate, P=0·10) in pigs from scFOS-supplemented mothers. No synergistic effect between maternal and post-weaning scFOS supplementation was observed. Therefore, maternal scFOS supplementation has long-lasting consequences by strengthening gut defences and immune response to a vaccine against an intestinal obligate intracellular pathogen. Prebiotic consumption by gestating and lactating mothers is decisive in modulating offspring intestinal immunity.


Asunto(s)
Vacunas Bacterianas/inmunología , Butiratos/sangre , Citocinas/metabolismo , Células Caliciformes/fisiología , Lawsonia (Bacteria) , Oligosacáridos/administración & dosificación , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Citocinas/genética , Infecciones por Desulfovibrionaceae/microbiología , Infecciones por Desulfovibrionaceae/veterinaria , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Fenómenos Fisiologicos Nutricionales Maternos , Oligosacáridos/química , Prebióticos , Porcinos , Enfermedades de los Porcinos/prevención & control
9.
PLoS One ; 9(9): e107508, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25238157

RESUMEN

Peripartum nutrition is crucial for developing the immune system of neonates. We hypothesized that maternal short-chain fructooligosaccharide (scFOS) supplementation could accelerate the development of intestinal immunity in offspring. Thirty-four sows received a standard or a scFOS supplemented diet (10 g scFOS/d) for the last 4 weeks of gestation and the 4 weeks of lactation. Colostrum and milk immunoglobulins (Ig) and TGFß1 concentrations were evaluated on the day of delivery and at d 6 and d 21 postpartum. Piglet intestinal structure, the immunologic features of jejunal and ileal Peyer's patches, and mesenteric lymph node cells were analysed at postnatal d 21. Short-chain fatty acid concentrations were measured over time in the intestinal contents of suckling and weaned piglets. Colostral IgA (P<0.05) significantly increased because of scFOS and TGFß1 concentrations tended to improve (P<0.1). IFNγ secretion by stimulated Peyer's patch and mesenteric lymph node cells, and secretory IgA production by unstimulated Peyer's patch cells were increased (P<0.05) in postnatal d 21 scFOS piglets. These differences were associated with a higher proportion of activated CD25+CD4α+ T cells among the CD4+ helper T lymphocytes (P<0.05) as assessed by flow cytometry. IFNγ secretion was positively correlated with the population of activated T lymphocytes (P<0.05). Total short-chain fatty acids were unchanged between groups during lactation but were higher in caecal contents of d 90 scFOS piglets (P<0.05); specifically propionate, butyrate and valerate. In conclusion, we demonstrated that maternal scFOS supplementation modified the intestinal immune functions in piglets in association with increased colostral immunity. Such results underline the key role of maternal nutrition in supporting the postnatal development of mucosal immunity.


Asunto(s)
Calostro/inmunología , Suplementos Dietéticos , Intestinos/inmunología , Oligosacáridos/farmacología , Porcinos/inmunología , Animales , Femenino , Intestinos/crecimiento & desarrollo , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal , Porcinos/metabolismo
10.
J Nutr Biochem ; 25(10): 1090-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25087993

RESUMEN

We recently observed that maternal 18:3n-3 increases piglet jejunal permeability. We hypothesized that this would favor intestinal lipopolysaccharide (LPS) passage and alter gut immune system education toward this bacterial ligand. Sows were fed 18:3n-3 or 18:2n-6 diets throughout gestation and lactation. In each litter, two piglets were given oral Gram-negative spectrum antibiotic from post-natal day (PND) 14 to 28. All piglets were weaned on a regular diet at PND28. 18:3n-3 piglets exhibited greater jejunal permeability to FITC-LPS at PND28. Levels of 18:3n-3 but neither 20:5n-3 nor 20:4n-6 were greater in mesenteric lymph nodes (MLN) of 18:3n-3 piglets. Jejunal explant or MLN cell cytokine responses to LPS were not influenced by the maternal diet. Antibiotic increased jejunal permeability to FITC-LPS and lowered the level of 20:5n-3 in MLN, irrespective of the maternal diet. At PND52, no long-lasting effect of the maternal diet or antibiotic treatment on jejunal permeability was noticed. 18:3n-3 and 20:4n-6 levels were greater and lower, respectively, in MLN of 18:3n-3 compared to 18:2n-6 piglets. IL-10 production by MLN cells in response to LPS was greater in the 18:3n-3 group, irrespective of the neonatal antibiotic treatment. IL-8 secretion by jejunal explants in response to LPS was lower in antibiotic-treated 18:3n-3 compared to 18:2n-6 piglets. Finally, proportion of MHC class II(+) antigen-presenting cells was greater in 18:3n-3 than 18:2n-6 MLN cells. In conclusion, maternal 18:3n-3 directs the intestinal immune response to LPS toward an anti-inflammatory profile beyond the breastfeeding period; microbiota involvement seems dependent of the immune cells considered.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Yeyuno/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Animales , Animales Recién Nacidos , Células Cultivadas , Citocinas/metabolismo , ADN Bacteriano/genética , Dieta/veterinaria , Ácidos Grasos Omega-6/farmacología , Femenino , Inflamación/patología , Yeyuno/inmunología , Yeyuno/microbiología , Fenómenos Fisiologicos Nutricionales Maternos , Venas Mesentéricas/efectos de los fármacos , Venas Mesentéricas/metabolismo , Microbiota , Permeabilidad , Embarazo , Resultado del Embarazo , Porcinos , Destete
11.
J Proteomics ; 75(3): 938-48, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22040742

RESUMEN

Dendritic cells (DCs) play a pivotal role in polarising Th lymphocyte subsets but it is unclear what molecular events occur when DCs generate Th2-type responses. Here, we analysed plasma membrane-enriched fractions from immature, pro-Th1 and pro-Th2 DCs and used a combination of iTRAQ labelling and LC-MS/MS to quantify changes in the proteomes. Analysis was performed on triplicate biological samples and changes verified by flow cytometry. MHC class II molecules and CD29 were up-regulated in pro-Th1 DCs whilst CD18 and CD44 were up-regulated in pro-Th2 DCs. One of the most down-regulated molecules in pro-Th1 DCs was YM-1 whilst the greatest decrease in pro-Th2 DCs was NAP-22. Other molecules up-regulated in pro-Th2 DC compared to pro-Th1 DCs included some potentially involved in protein folding during antigen processing (clathrin and Rab-7), whilst other non-membrane proteins such as enzymes/transporters related to cell metabolism (malate dehydrogenase, pyruvate kinase, and ATPase Na(+)/K(+)) were also recorded. This suggests that pro-Th2 DCs are more metabolically active while pro-Th1 DCs have a mature 'end state'. Overall, although several molecules were preferentially expressed on pro-Th2 DCs, our proteomics data support the view of a 'limited maturation' of pro-Th2 DCs compared to pro-Th1 DCs.


Asunto(s)
Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Animales , Membrana Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Femenino , Proteínas de la Membrana/inmunología , Ratones , Proteoma/inmunología , Proteómica/métodos , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
12.
Vet Res ; 42: 19, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21314903

RESUMEN

At birth, the immune system is still in development making neonates more susceptible to infections. The recognition of microbial ligands is a key step in the initiation of immune responses. It can be mimicked to stimulate the immune system by the use of synthetic ligands recognising pattern recognition receptors. In human and mouse, it has been found that neonatal cytokine responses to toll-like receptor (TLR) ligands differ in many ways from those of adults but the relevant studies have been limited to cord blood and spleen cells. In this study, we compared the responses in neonate and adult sheep to CpG oligodeoxynucleotides (ODN), a TLR9 ligand, in both a mucosal and a systemic organ. We observed that in response to CpG-ODN more IL-12 was produced by neonatal than adult sheep cells from mesenteric lymph nodes (MLN) and spleen. This higher IL-12 response was limited to the first 20 days after birth for MLN cells but persisted for a longer period for spleen cells. The major IL-12-producing cells were identified as CD14+CD11b+. These cells were poor producers of IL-12 in response to direct stimulation with CpG-ODN and required the cooperation of other MLN cells. The difference in response to CpG-ODN between neonates and adults can be attributed to both a higher proportion of CD14+CD11b+ cells in neonate lambs and their higher capacity to produce IL-15. The IL-15 increases IL-12 production by an amplifying feedback loop involving CD40.


Asunto(s)
Citocinas/genética , Interleucina-12/biosíntesis , Oligodesoxirribonucleótidos/farmacología , Ovinos/inmunología , Receptores Toll-Like/genética , Factores de Edad , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/inmunología , Colistina/administración & dosificación , Colistina/farmacología , Calostro/metabolismo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática/veterinaria , Citometría de Flujo/veterinaria , Interleucina-15/biosíntesis , Ligandos , Ganglios Linfáticos/inmunología , Microscopía Electrónica de Transmisión/veterinaria , Oligodesoxirribonucleótidos/administración & dosificación , Reacción en Cadena de la Polimerasa/veterinaria , ARN/genética , ARN/metabolismo , Ovinos/crecimiento & desarrollo , Bazo/inmunología , Receptores Toll-Like/metabolismo
13.
PLoS One ; 5(10): e13705, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060840

RESUMEN

BACKGROUND: Comparative studies on the response of neonates and adults to TLR stimulation have been almost exclusively limited to comparisons of human neonatal cord blood cells with peripheral blood from adults, and analyses of spleen cell responses in mice. We need to extend these studies and gain further information regarding such responses at mucosal sites. METHODOLOGY/PRINCIPAL FINDINGS: We used sheep as a large animal model to study TLR agonist responses in the lymph nodes draining the intestine, an organ that must adapt to profound changes after birth. In response to the imidazoquinoline compound R-848, neonatal mesenteric lymph node (MLN) and spleen cells produced more IL-12 and, consequently, more IFNγ than their adult counterparts. This difference was age-related for both organs, but the preferential IL-12 response decreased more rapidly in the MLN, with young animals producing similar amounts of this cytokine to adults, from the age of 20 days onwards. Intracellular assays and depletion experiments identified CD14(+)CD11b(+)CD40(+) cells as the main producer of IL-12. These cells accounted for a greater proportion of neonatal than of adult MLN cells, and also produced, in direct response to R-848, more IL-12 after isolation. This strong IL-12 response in neonates occurred despite the production of larger amounts of the regulatory cytokine IL-10 and the stronger upregulation of SOCS-1 and SOCS-3 mRNA levels than in adult cells, and was correlated with an increase in p38/MAPK phosphorylation. CONCLUSIONS/SIGNIFICANCE: This is the first attempt to decipher the mechanism by which neonatal MLN cells produce more IL-12 than adult cells in response to the TLR8 agonist R-848. CD14(+)CD11b(+)CD40(+) IL-12-producing cells were more numerous in neonate than in adult MLN cells and displayed higher intracellular responsiveness upon R-848 stimulation. This work provides relevant information for future vaccination or immunostimulation strategies targeting neonates.


Asunto(s)
Animales Recién Nacidos , Imidazoles/farmacología , Interleucina-12/biosíntesis , Ganglios Linfáticos/efectos de los fármacos , Mesenterio/citología , Animales , Antígenos CD/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Interferón gamma/biosíntesis , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/ultraestructura , Microscopía Electrónica , Ovinos , Receptores Toll-Like/agonistas
14.
Immunol Lett ; 129(2): 85-93, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20144655

RESUMEN

Cyclophosphamide (CTX) was previously shown to induce the recruitment of immunosuppressive myeloid cells in mouse. In the non-obese diabetic (NOD) mouse, which develops spontaneously type I diabetes, CTX is widely known to accelerate the autoimmune process. Our data demonstrated that CTX actually did mobilize an immunosuppressive myeloid CD11b(+) Ly-6G(-) population in the NOD mouse spleen in addition to a well-identified neutrophil CD11b(+) Ly-6G(+) population. CD11b(+) Ly-6G(-) cells, in contrast with CD11b(+) Ly-6G(+) cells, were able to inhibit in vitro mitogen-induced syngeneic T cell proliferation. CD11b(+) Ly-6G(-) cells represented a heterogeneous population mainly made of CD31(hi) cells and Ly-6C(+) monocytes. Only these last ones supported the immunosuppressive in vitro activity and resembled circulating inflammatory monocytes according to flow cytometry, cytology and RT-PCR data. Although CD11b(+) Ly-6G(-) Ly-6C(+) cells exhibited immunosuppressive function in vitro, they were not able to control the autoimmune response following CTX injection. Our data show that these CTX-induced immunosuppressive myeloid cells actually behaved as very plastic cells in vitro. Likewise, in the model of prediabetic NOD/SCID mice, CD11b(+) Ly-6G(-) Ly-6C(+) were able to differentiate into CD11c+ cells after i.v. injection. Herein, we described a new mechanism by which CTX might induce diabetes acceleration in the NOD mouse. In summary, recruited immunosuppressive cells might participate in the immunopotentiating effect of CTX on the autoimmune response by their further differentiation into immunostimulatory cells.


Asunto(s)
Diferenciación Celular , Ciclofosfamida/farmacología , Diabetes Mellitus/inmunología , Inmunosupresores/farmacología , Monocitos/citología , Monocitos/efectos de los fármacos , Animales , Proliferación Celular , Diabetes Mellitus/fisiopatología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Monocitos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Dev Comp Immunol ; 32(10): 1231-41, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18514862

RESUMEN

In mammals, Toll-like receptors play a critical role in initiating innate immune responses and modulating adaptive immunity, by recognizing conserved microbial molecular patterns. This study was undertaken to identify specific features of the responses to synthetic toll-like receptor (TLR) agonists in goats, for the definition of tailored immunostimulation strategies. We show here, in contrast to what has been shown in mice, that mesenteric lymph nodes (MLNs) cells and splenocytes from neonatal goats produce much higher levels of TH1-type cytokines than adults in response to various TLR agonists. IL-12 was identified as a critical cytokine for IFNgamma production by CD8(+) neonatal cells. The higher level of IL-12 production by neonatal MLN and spleen cells than by adult cells was not correlated with a higher level of TLR expression or lower levels of production of the regulatory cytokine IL-10. In neonates, two cell populations-class II(+) CD8(+) and class II(+) CD8(-) cells-produce IL-12 in response to R848 and Poly I:C, respectively. Thus, goat kids have characteristics that could be exploited to favor development of the TH1-type responses critical for the control of intracellular pathogens.


Asunto(s)
Envejecimiento/inmunología , Citocinas/inmunología , Cabras/inmunología , Células TH1/inmunología , Receptores Toll-Like/inmunología , Animales , Animales Recién Nacidos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Citocinas/biosíntesis , Citocinas/genética , Femenino , Ligandos , Masculino , Poli I-C/farmacología , Receptores Toll-Like/agonistas
16.
Proteomics ; 8(5): 980-93, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18324723

RESUMEN

Dendritic cells (DCs) are important in the initiation of primary immune responses against pathogens. To aid understanding of how DCs guide T helper (Th)2-type responses, we employed 2-DE in association with MS/MS to identify proteins which characterise pro-Th2 DCs (matured with zero-to-three hours released proteins (0-3hRP), released by Schistosoma mansoni cercariae) versus pro-Th1 DCs (matured with lipopolysaccharide, LPS) and immature DCs. Software analysis of average 2-DE gels (three replicates per DC type) showed many similarities in the pattern of spots between the three groups of DCs but also marked changes. The major and significant changes in protein expression mainly affected cytoskeletal proteins. Other differences included chaperone proteins and enzymes involved in protein folding, S100 calcium-binding proteins, peroxiredoxin 1, superoxide dismutase 1, several annexins and arginase 1. Our study demonstrates that pro-Th2 DCs matured with 0-3hRP exhibit a proteome that is intermediate between that of immature DCs and pro-Th1 DCs. Finally, the differential regulation of protein spots identified by MALDI-MS/MS as having cytoskeletal and morphological functions was confirmed by contrast, confocal and scanning electron microscopy examination of DCs. Together, our results support the view that Th2 differentiation results from a 'limited maturation' of DCs.


Asunto(s)
Antígenos Helmínticos/inmunología , Células Dendríticas/química , Proteoma/análisis , Schistosoma mansoni/inmunología , Células Th2/inmunología , Animales , Células Dendríticas/inmunología , Electroforesis en Gel Bidimensional , Femenino , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Int Immunol ; 17(11): 1409-18, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16186163

RESUMEN

Exposure of the mammalian host to infective larvae of Schistosoma mansoni causes an acute inflammatory response in the skin and the activation of several cell types of the innate immune response including macrophages. Using an in vitro model of macrophage activation, we show that schistosome larvae possess molecules that directly stimulate both thioglycollate-elicited macrophages (tM) and IFNgamma-activated tM in vitro to produce several cytokines including IL-6, IL-12p40 and IL-10. The parasite-derived molecules are enriched within the material released by the parasite following transformation [0- to 3-h released larval preparation (0-3hRP)] but not within soluble preparations of whole larvae. Cytokine production was maintained in the presence of polymyxin B, confirming that contaminating endotoxin was not responsible. IL-12p40 and IL-10 production was much lower by cells from C3H/HeJ mice, which have defective Toll-like receptor 4 (TLR4), but IL-6 production was unaffected. Experiments using TLR4-/- mice confirmed that IL-12p40 production by tM in response to 0-3hRP was partly dependent upon functional TLR4, whereas IL-6 production was entirely independent. In contrast, tM from MyD88-/- mice failed to secrete either IL-12p40 or IL-6, underlining a pivotal role of TLR signalling in cytokine production by macrophages in response to stimulation with 0-3hRP. Finally, we show that glycan components of 0-3hRP are required for optimal cytokine production since protease treatment of 0-3hRP had no effect on IL-12p40 production and only a slight effect on IL-6, while sodium meta-periodate treatment almost completely abolished production of both cytokines.


Asunto(s)
Activación de Macrófagos/inmunología , Macrófagos Peritoneales/inmunología , Schistosoma mansoni/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Células Cultivadas , Femenino , Interleucinas/inmunología , Larva/inmunología , Ratones , Ratones Noqueados , Receptor Toll-Like 4/deficiencia
18.
Immunol Lett ; 91(2-3): 221-7, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15019293

RESUMEN

CD11b+Gr-1+ inhibitory macrophages (iMacs) were implicated in profound depression of T cell functions sometimes observed during cyclophosphamide treatments and overwhelming infections, through a secretion of nitric oxide (NO). Myeloid origin and maturation stages of iMacs are still unknown. As tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) contributed crucially to the activation of inducible NO synthase (iNOS) gene transcription and to the differentiation of macrophages, we tested their roles in the induction of iMacs differentiation from bone marrow hematopoietic progenitor cells (HPC) of uncompromised mice. Lineage phenotypes-negative (lin)) c-kit+ cells of Balb/c mice were cultured 6 days with granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF, c-kit ligand) in presence or not of TNF-alpha or IFN-gamma. CD11b+Gr-1+ cells only derived in presence of [GM-CSF + SCF + TNF-alpha] or [GM-CSF + SCF + IFN-gamma] could express iNOS upon in vitro stimulation with [IFN-gamma + TNF-alpha] or [IFN-gamma + LPS] known to boost iNOS expression in murine macrophages. However, whereas [GM-CSF + SCF + TNF-alpha] induced only weakly iMacs generation and contributed also to the differentiation of CD11b+Gr-1-CD11c+ myeloid dendritic cells, [GM-CSF + SCF + IFN-gamma] induced exclusively and importantly iMacs differentiation. Moreover [GM-CSF + SCF + IFN-gamma]-generated iMacs were more mature than [GM-CSF + SCF + TNF-alpha]-derived iMacs since IFN-gamma increased more strongly CD11b+Gr-1+ cells expressing Ly-6C and generated lesser cells expressing MHC class II and CD86 molecules. Finally [GM-CSF + SCF + IFN-gamma]-generated CD11b+ cells showing a powerful suppressive activity on T cell proliferations, correlated with NO secretion. In conclusion, our study showed, for the first time, that IFN-gamma induced very efficiently the differentiation of functional iMacs from lin- c-kit+ murine HPC in vitro, and indicated clearly that iMacs progenitors may be present in bone marrow of naïve mice.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/farmacología , Animales , Antígeno CD11b/metabolismo , Linaje de la Célula , Células Cultivadas , Femenino , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Células Madre Hematopoyéticas/metabolismo , Macrófagos/citología , Macrófagos/enzimología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...