Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(5): e0232987, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407399

RESUMEN

Escherichia coli and Staphylococcus aureus are important agents of urinary tract infections that can often evolve to severe infections. The rise of antibiotic-resistant strains has driven the search for novel therapies to replace the use or act as adjuvants of antibiotics. In this context, plant-derived compounds have been widely investigated. Cuminaldehyde is suggested as the major antimicrobial compound of the cumin seed essential oil. However, this effect is not fully understood. Herein, we investigated the in silico and in vitro activities of cuminaldehyde, as well as its ability to potentiate ciprofloxacin effects against S. aureus and E. coli. In silico analyses were performed by using different computational tools. The PASS online and SwissADME programmes were used for the prediction of biological activities and oral bioavailability of cuminaldehyde. For analysis of the possible toxic effects and the theoretical pharmacokinetic parameters of the compound, the Osiris, SwissADME and PROTOX programmes were used. Estimations of cuminaldehyde gastrointestinal absorption, blood brain barrier permeability and skin permeation by using SwissADME; and drug likeness and score by using Osiris, were also evaluated The in vitro antimicrobial effects of cuminaldehyde were determined by using microdilution, biofilm formation and time-kill assays. In silico analysis indicated that cuminaldehyde may act as an antimicrobial and as a membrane permeability enhancer. It was suggested to be highly absorbable by the gastrointestinal tract and likely to cross the blood brain barrier. Also, irritative and harmful effects were predicted for cuminaldehyde if swallowed at its LD50. Good oral bioavailability and drug score were also found for this compound. Cuminaldehyde presented antimicrobial and anti-biofilm effects against S. aureus and E. coli.. When co-incubated with ciprofloxacin, it enhanced the antibiotic antimicrobial and anti-biofilm actions. We suggest that cuminaldehyde may be useful as an adjuvant therapy to ciprofloxacin in S. aureus and E. coli-induced infections.


Asunto(s)
Antibacterianos/administración & dosificación , Benzaldehídos/administración & dosificación , Ciprofloxacina/administración & dosificación , Cimenos/administración & dosificación , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Adyuvantes Farmacéuticos/administración & dosificación , Adyuvantes Farmacéuticos/farmacocinética , Adyuvantes Farmacéuticos/toxicidad , Administración Oral , Benzaldehídos/farmacocinética , Benzaldehídos/toxicidad , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Disponibilidad Biológica , Simulación por Computador , Cimenos/farmacocinética , Cimenos/toxicidad , Sinergismo Farmacológico , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Infecciones Urinarias/tratamiento farmacológico
3.
Molecules ; 24(8)2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027179

RESUMEN

Wound healing can be delayed following colonization and infection with the common bacterium Pseudomonas aeruginosa. While multiple therapies are used for their treatment, these are ineffective, expensive, and labour-intensive. Thus, there is an enormous unmet need for the treatment of infected wounds. Cinnamaldehyde, the major component of cinnamon oil, is well known for its antimicrobial properties. Herein, we investigated the effects of sub-inhibitory concentrations of cinnamaldehyde in the virulence of P. aeruginosa. We also assessed its healing potential in P. aeruginosa-infected mouse skin wounds and the mechanisms involved in this response. Sub-inhibitory concentrations of cinnamaldehyde reduced P. aeruginosa metabolic rate and its ability to form biofilm and to cause haemolysis. Daily topical application of cinnamaldehyde on P. aeruginosa-infected skin wounds reduced tissue bacterial load and promoted faster healing. Lower interleukin-17 (IL-17), vascular endothelial growth factor (VEGF) and nitric oxide levels were detected in cinnamaldehyde-treated wound samples. Blockage of transient receptor potential ankyrin 1, the pharmacological target of cinnamaldehyde, abrogated its healing activity and partially reversed the inhibitory actions of this compound on VEGF and IL-17 generation. We suggest that topical application of sub-inhibitory concentrations of cinnamaldehyde may represent an interesting approach to improve the healing of P. aeruginosa-infected skin wounds.


Asunto(s)
Acroleína/análogos & derivados , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Piel/microbiología , Cicatrización de Heridas/efectos de los fármacos , Acroleína/uso terapéutico , Animales , Antiinfecciosos/uso terapéutico , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Interleucina-17/metabolismo , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Canal Catiónico TRPA1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Front Microbiol ; 7: 1722, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833605

RESUMEN

Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains.

5.
Int Immunopharmacol ; 34: 60-70, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26922677

RESUMEN

Cinnamaldehyde is a natural essential oil suggested to possess anti-bacterial and anti-inflammatory properties; and to activate transient receptor potential ankyrin 1 (TRPA1) channels expressed on neuronal and non-neuronal cells. Here, we investigated the immunomodulatory effects of cinnamaldehyde in an in vivo model of systemic inflammatory response syndrome (SIRS) induced by lipopolysaccharide. Swiss mice received a single oral treatment with cinnamaldehyde 1 h before LPS injection. To investigate whether cinnamaldehyde effects are dependent on TRPA1 activation, animals were treated subcutaneously with the selective TRPA1 antagonist HC-030031 5 min prior to cinnamaldehyde administration. Vehicle-treated mice were used as controls. Cinnamaldehyde ameliorated SIRS severity in LPS-injected animals. Diminished numbers of circulating mononuclear cells and increased numbers of peritoneal mononuclear and polymorphonuclear cell numbers were also observed. Cinnamaldehyde augmented the number of peritoneal Ly6C(high) and Ly6C(low) monocyte/macrophage cells in LPS-injected mice. Reduced levels of nitric oxide, plasma TNFα and plasma and peritoneal IL-10 were also detected. Additionally, IL-1ß levels were increased in the same animals. TRPA1 antagonism by HC-030031 reversed the changes in the number of circulating and peritoneal leukocytes in cinnamaldehyde-treated animals, whilst increasing the levels of peritoneal IL-10 and reducing peritoneal IL-1ß. Overall, cinnamaldehyde modulates SIRS through TRPA1-dependent and independent mechanisms.


Asunto(s)
Acroleína/análogos & derivados , Macrófagos/efectos de los fármacos , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Canales de Potencial de Receptor Transitorio/metabolismo , Acetanilidas/farmacología , Acroleína/uso terapéutico , Animales , Movimiento Celular/efectos de los fármacos , Cinnamomum zeylanicum/inmunología , Modelos Animales de Enfermedad , Femenino , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Ratones , Embarazo , Purinas/farmacología , Canal Catiónico TRPA1
6.
Front Microbiol ; 7: 2052, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066373

RESUMEN

Bacterial resistance to the available marketed drugs has prompted the search of novel therapies; especially in regards of anti-virulence strategies that aim to make bacteria less pathogenic and/or decrease their probability to become resistant to therapy. Cinnamaldehyde is widely known for its antibacterial properties through mechanisms that include the interaction of this compound with bacterial cell walls. However, only a handful of studies have addressed its effects on bacterial virulence, especially when tested at sub-inhibitory concentrations. Herein, we show for the first time that cinnamaldehyde is bactericidal against Staphylococcus aureus and Enterococcus faecalis multidrug resistant strains and does not promote bacterial tolerance. Cinnamaldehyde actions were stronger on S. aureus as it was able to inhibit its hemolytic activity on human erythrocytes and reduce its adherence to latex. Furthermore, cinnamaldehyde enhanced the serum-dependent lysis of S. aureus. In vivo testing of cinnamaldehyde in Galleria mellonella larvae infected with S. aureus, showed this compound improves larvae survival whilst diminishing bacterial load in their hemolymph. We suggest that cinnamaldehyde may represent an alternative therapy to control S. aureus-induced bacterial infections as it presents the ability to reduce bacterial virulence/survival without promoting an adaptive phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...