Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Mol Plant Microbe Interact ; 36(8): 502-515, 2023 Aug.
Article En | MEDLINE | ID: mdl-37147768

Lasiodiplodia theobromae attacks over 500 plant species and is an important pathogen of tropical and subtropical fruit. Due to global warming and climate change, the incidence of disease associated with L. theobromae is rising. Virulence tests performed on avocado and mango branches and fruit showed a large diversity of virulence of different L. theobromae isolates. Genome sequencing was performed for two L. theobromae isolates, representing more virulent (Avo62) and less-virulent (Man7) strains, to determine the cause of their variation. Comparative genomics, including orthologous and single-nucleotide polymorphism (SNP) analyses, identified SNPs in the less-virulent strain in genes related to secreted cell wall-degrading enzymes, stress, transporters, sucrose, and proline metabolism, genes in secondary metabolic clusters, effectors, genes involved in the cell cycle, and genes belonging to transcription factors that may contribute to the virulence of L. theobromae. Moreover, carbohydrate-active enzyme analysis revealed a minor increase in gene counts of cutinases and pectinases and the absence of a few glycoside hydrolases in the less-virulent isolate. Changes in gene-copy numbers might explain the morphological differences found in the in-vitro experiments. The more virulent Avo62 grew faster on glucose, sucrose, or starch as a single carbon source. It also grew faster under stress conditions, such as osmotic stress, alkaline pH, and relatively high temperature. Furthermore, the more virulent isolate secreted more ammonia than the less-virulent one both in vitro and in vivo. These study results describe genome-based variability related to L. theobromae virulence, which might prove useful for the mitigation of postharvest stem-end rot. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Ascomycota , Virulence/genetics , Polygalacturonase/metabolism
2.
Environ Microbiol ; 25(9): 1728-1746, 2023 09.
Article En | MEDLINE | ID: mdl-36807446

Fruits harbour abundant and diverse microbial communities that protect them from post-harvest pathogens. Identification of functional traits associated with a given microbiota can provide a better understanding of their potential influence. Here, we focused on the epiphytic microbiome of apple fruit. We suggest that shotgun metagenomic data can indicate specific functions carried out by different groups and provide information on their potential impact. Samples were collected from the surface of 'Golden Delicious' apples from four orchards that differ in their geographic location and management practice. Approximately 1 million metagenes were predicted based on a high-quality assembly. Functional profiling of the microbiome of fruits from orchards differing in their management practice revealed a functional shift in the microbiota. The organic orchard microbiome was enriched in pathways involved in plant defence activities; the conventional orchard microbiome was enriched in pathways related to the synthesis of antibiotics. The functional significance of the variations was explored using microbial network modelling algorithms to reveal the metabolic role of specific phylogenetic groups. The analysis identified several associations supported by other published studies. For example, the analysis revealed the nutritional dependencies of the Capnodiales group, including the Alternaria pathogen, on aromatic compounds.


Ascomycota , Malus , Microbiota , Fruit , Phylogeny , Microbiota/genetics
3.
Front Microbiol ; 13: 928888, 2022.
Article En | MEDLINE | ID: mdl-36016781

Microbial communities associated with fruit can contribute to quality and pathogen resistance, but little is known about their assembly and dynamics during fruit development and storage. Three apple cultivars growing under the same environmental conditions were utilized to examine the apple carposphere microbiome composition and structure at different developmental stages and storage. There was a significant effect (Adonis, p ≤ 0.001) of fruit genotype and its developmental stages and storage times on the fruit surface microbial assemblage and a strong temporal microbial community succession was detected (Mantel test: R ≤ 0.5, p = 0.001) in both bacterial and fungal communities. A set of 15 bacterial and 35 fungal core successional taxa and members exhibiting differential abundances at different fruit stages were identified. For the first time, we show the existence of underlying universal dynamics in the assembly of fruit-associated microbiomes. We also provide evidence of strong microbial cross-domain associations and uncover potential microbe-microbe correlations in the apple carposphere. Together our findings shed light on how the fruit carposphere assemble and change over time, and provide new insights into fruit microbial ecology.

4.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Article En | MEDLINE | ID: mdl-35326141

Anthocyanins are secondary metabolites responsible for the red coloration of mango and apple. The red color of the peel is essential for the fruit's marketability. Anthocyanins and flavonols are synthesized via the flavonoid pathway initiated from phenylalanine (Phe). Anthocyanins and flavonols have antioxidant, antifungal, and health-promoting properties. To determine if the external treatment of apple and mango trees with Phe can induce the red color of the fruit peel, the orchards were sprayed 1 to 4 weeks before the harvest of mango (cv. Kent, Shelly, and Tommy Atkins) and apple fruit (cv. Cripps pink, Gala and Starking Delicious). Preharvest Phe treatment increased the red coloring intensity and red surface area of both mango and apple fruit that was exposed to sunlight at the orchard. The best application of Phe was 2-4 weeks preharvest at a concentration of 0.12%, while a higher concentration did not have an additive effect. A combination of Phe and the positive control of prohydrojasmon (PDJ) or several applications of Phe did not have a significant added value on the increase in red color. Phe treatment increased total flavonoid, anthocyanin contents, and antioxidant activity in treated fruit compared to control fruits. High Performance Liquid Chromatography analysis of the peel of Phe treated 'Cripps pink' apples showed an increase in total flavonols and anthocyanins with no effect on the compound composition. HPLC analysis of 'Kent' mango fruit peel showed that Phe treatment had almost no effect on total flavonols content while significantly increasing the level of anthocyanins was observed. Thus preharvest application of Phe combined with sunlight exposure offers an eco-friendly, alternative treatment to improve one of the most essential quality traits-fruit color.

5.
Plant Biotechnol J ; 20(1): 226-237, 2022 01.
Article En | MEDLINE | ID: mdl-34520611

Pathogenic fungi cause major postharvest losses. During storage and ripening, fruit becomes highly susceptible to fungi that cause postharvest disease. Fungicides are effective treatments to limit disease. However, due to increased public concern for their possible side effects, there is a need to develop new strategies to control postharvest fungal pathogens. Botrytis cinerea, a common postharvest pathogen, was shown to uptake small double-stranded RNA (dsRNA) molecules from the host plant. Such dsRNA can regulate gene expression through the RNA interference system. This work aimed to develop a synthetic dsRNA simultaneously targeting three essential transcripts active in the fungal ergosterol biosynthesis pathway (dsRNA-ERG). Our results show initial uptake of dsRNA in the emergence zone of the germination tube that spreads throughout the fungus and results in down-regulation of all three targeted transcripts. Application of dsRNA-ERG decreased B. cinerea germination and growth in in vitro conditions and various fruits, leading to reduce grey-mould decay. The inhibition of growth or decay was reversed by the addition of ergosterol. While dual treatment with dsRNA-ERG and ergosterol-inhibitor fungicide reduced by 100-fold the required amount of fungicide to achieve the same protection rate. The application of dsRNA-ERG induced systemic protection as shown by decreased decay development at inoculation points distant from the treatment point in tomato and pepper fruits. Overall, this study suggests that dsRNA-ERG can effectively control B. cinerea growth and grey-mould development suggesting its efficacy as a future method for postharvest control of fungal pathogens.


Plant Diseases , RNA, Double-Stranded , Botrytis , Ergosterol , Plant Diseases/microbiology , RNA, Double-Stranded/genetics
6.
Environ Microbiol ; 23(10): 6038-6055, 2021 10.
Article En | MEDLINE | ID: mdl-33734550

We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.


Malus , Microbiota , Bacteria/genetics , Fruit/microbiology , Fungi/genetics , Malus/microbiology
7.
Hortic Res ; 8(1): 17, 2021 Jan 10.
Article En | MEDLINE | ID: mdl-33423039

Mango fruit exposed to sunlight develops red skin and are more resistant to biotic and abiotic stresses. Here we show that harvested red mango fruit that was exposed to sunlight at the orchard is more resistant than green fruit to Colletotrichum gloeosporioides. LCMS analysis showed high amounts of antifungal compounds, as glycosylated flavonols, glycosylated anthocyanins, and mangiferin in red vs. green mango skin, correlated with higher antioxidant and lower ROS. However, also the green side of red mango fruit that has low levels of flavonoids was resistant, indicated induced resistance. Transcriptomes of red and green fruit inoculated on their red and green sides with C. gloeosporioides were analyzed. Overall, in red fruit skin, 2,187 genes were upregulated in response to C. gloeosporioides. On the green side of red mango, upregulation of 22 transcription factors and 33 signaling-related transcripts indicated induced resistance. The RNA-Seq analysis suggests that resistance of the whole red fruit involved upregulation of ethylene, brassinosteroid, and phenylpropanoid pathways. To conclude, red fruit resistance to fungal pathogen was related to both flavonoid toxicity and primed resistance of fruit that was exposed to light at the orchard.

8.
Plant Dis ; 105(6): 1602-1609, 2021 Jun.
Article En | MEDLINE | ID: mdl-33337236

Pathogenic fungi, as the Botryosphaeriaceae family, can penetrate during flowering and endophytically colonize the stem of mango fruit (Mangifera indica) without causing any visible symptoms. Those fungi become active during abiotic stress or fruit ripening and cause stem and inflorescence dieback or fruit stem-end rot (SER) fungal disease. We hypothesized that anti-fungal treatments during the main event of Botryosphaeriaceae penetration would reduce the disease. Initially, we showed that treatments with the fungicide "Switch" (fludioxonil and cyprodinil) during orchard flowering (cv. Keitt and Shelly) reduced the occurrence of pathogenic fungi in the fruit stem-end and significantly reduced fruit's incidence of SER disease. As mango orchards are sprayed weekly against powdery mildew (PM) disease during flowering, we combined two treatments against PM disease with two treatments against both PM- and SER-causing pathogens. Application of biological treatments of the fungicide "Serenade" (Bacillus subtilis) or chemical treatments of the fungicides "Luna Tranquility" (fluopyram and pyrimethanil) or "Switch" during flowering in 'Shelly' and 'Keitt' mango orchards significantly reduced inflorescence/stem dieback (up to 50%) and fruit drop and significantly increased the number of fruit per tree, which led to a significant increase in yield, up to 41%, in heavily infected orchards. In addition, this application during flowering (March to April) affected post-harvest fruit quality (August to September) by a significant (P < 0.005) reduction of the incidence and the severity of stem-end rot disease and even fruit side-rot disease, without affecting fruit ripening and other quality parameters. While all fungicides were effective, the chemical fungicides were more effective than the biological fungicide. Thus, changing the PM fungicide regime to control Botryosphaeriaceae penetration during mango orchard flowering led to reduced inflorescence/stem dieback, reduced fruit drop, increase in yield, and minimized post-harvest decay.


Ascomycota , Fungicides, Industrial , Mangifera , Fruit , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control
9.
Microorganisms ; 8(5)2020 Apr 28.
Article En | MEDLINE | ID: mdl-32354087

Date palm (Phoenix dactylifera) is considered to be a highly important food crop in several African and Middle Eastern countries due to its nutritional value and health-promoting properties. Microbial contamination of dates has been of concern to consumers, but very few works have analyzed in detail the microbial load of the different parts of date fruit. In the present work, we characterized the fungal communities of date fruit using a metagenomic approach, analyzing the data for differences between microbial populations residing in the pulp and peel of "Medjool" dates at the different stages of fruit development. The results revealed that Penicillium, Cladosporium, Aspergillus, and Alternaria were the most abundant genera in both parts of the fruit, however, the distribution of taxa among the time points and tissue types (peel vs. pulp) was very diverse. Penicillium was more abundant in the pulp at the green developmental stage (Kimri), while Aspergillus was more frequent in the peel at the brown developmental stage (Tamer). The highest abundance of Alternaria was detected at the earliest sampled stage of fruit development (Hababauk stage). Cladosporium had a high level of abundance in peel tissues at the Hababauk and yellow (Khalal) stages. Regarding the yeast community, the abundance of Candida remained stable up until the Khalal stage, but exhibited a dramatic increase in abundance at the Tamer stage in peel tissues, while the level of Metschnikowia, a genus containing several species with postharvest biocontrol activity, exhibited no significant differences between the two tissue types or stages of fruit development. This work constitutes a comprehensive metagenomic analysis of the fungal microbiome of date fruits, and has identified changes in the composition of the fungal microbiome in peel and pulp tissues at the different stages of fruit development. Notably, this study has also characterized the endophytic fungal microbiome present in pulp tissues of dates.

10.
Foods ; 9(5)2020 May 18.
Article En | MEDLINE | ID: mdl-32443417

More than 40% of harvested fruit is lost, largely due to decay. In parallel, restrictions on postharvest fungicides call for eco-friendly alternatives. Fruit's natural resistance depends mainly on flavonoids and anthocyanins-which have antioxidant and antifungal activity-synthesized from the phenylpropanoid pathway with phenylalanine as a precursor. We hypothesized that phenylalanine could induce fruit's natural defense response and tolerance to fungal pathogens. The postharvest application of phenylalanine to mango and avocado fruit reduced anthracnose and stem-end rot caused by Colletotrichum gloeosporioides and Lasiodiplodia theobromae, respectively. The postharvest application of phenylalanine to citrus fruit reduced green mold caused by Penicillium digitatum. The optimal phenylalanine concentrations for postharvest application were 6 mM for citrus fruits and 8 mM for mangoes and avocadoes. The preharvest application of phenylalanine to strawberries, mangoes, and citrus fruits also reduced postharvest decay. Interestingly, citrus fruit resistance to P. digitatum inoculated immediately after phenylalanine application was not improved, whereas inoculation performed 2 days after phenylalanine treatment induced the defense response. Five hours after the treatment, no phenylalanine residue was detected on/in the fruit, probably due to rapid phenylalanine metabolism. Additionally, in vitro testing showed no inhibitory effect of phenylalanine on conidial germination. Altogether, we characterized a new inducer of the fruit defense response-phenylalanine. Preharvest or postharvest application to fruit led to the inhibition of fungal pathogen-induced postharvest decay, suggesting that the application of phenylalanine could become an eco-friendly and healthy alternative to fungicides.

11.
Microorganisms ; 8(4)2020 Apr 13.
Article En | MEDLINE | ID: mdl-32295088

Stem-end rot (SER) is a serious postharvest disease of mango fruit grown in semi-dry area. Pathogenic and non-pathogenic microorganisms endophytically colonize fruit stem-end. As fruit ripens, some pathogenic fungi switch from endophytic colonization to necrotrophic stage and cause SER. Various pre/post-treatments may alter the stem-end community and modify SER incidence. This study investigates the effects of harvesting mango with or without short stem-end on fruit antifungal and antioxidant activities, the endophytic microbiome, and SER during fruit storage. Our results show that harvesting mango with short stem significantly reduced SER during storage. At harvest, fruit harvested with or without stem exhibit a similar microorganisms community profile. However, after storage and shelf life, the community of fruit without stem shifted toward more SER-causing-pathogens, such as Lasiodiplodia, Dothiorella, and Alternaria, and separated from the community of fruit with stem. This change correlated to the high antifungal activity of stem extract that strongly inhibited both germination and growth of Lasiodiplodia theobromae and Alternaria alternata. Additionally, fruit that was harvested with stem displayed more antioxidant activity and less ROS. Altogether, these findings indicate that harvesting mango with short stem leads to higher antifungal and antioxidant activity, retaining a healthier microbial community and leading to reduced postharvest SER.

12.
Microorganisms ; 8(3)2020 Mar 18.
Article En | MEDLINE | ID: mdl-32197504

Fungal pathogens in fruits and vegetables cause significant losses during handling, transportation, and storage. Biological control with microbial antagonists replacing the use of chemical fungicides is a major approach in postharvest disease control, and several products based on single antagonists have been developed but have limitations related to reduced and inconsistent performance under commercial conditions. One possible approach to enhance the biocontrol efficacy is to broaden the spectrum of the antagonistic action by employing compatible microbial consortia. Here, we explore commercial kefir grains, a natural probiotic microbial consortium, by culture-dependent and metagenomic approaches and observed a rich diversity of co-existing yeasts and bacterial population. We report effective inhibition of the postharvest pathogen Penicillium expansum on apple by using the grains in its fresh commercial and milk-activated forms. We observed few candidate bacteria and yeasts from the kefir grains that grew together over successive enrichment cycles, and these mixed fermentation cultures showed enhanced biocontrol activities as compared to the fresh commercial or milk-activated grains. We also report several individual species of bacteria and yeasts with biocontrol activities against Penicillium rots on apple and grapefruit. These species with antagonistic properties could be further exploited to develop a synthetic consortium to achieve enhanced antagonistic effects against a wide range of postharvest pathogens.

13.
Foods ; 9(2)2020 Jan 23.
Article En | MEDLINE | ID: mdl-31979404

Postharvest application of fungicides is commonly applied in order to reduce food loss. Prochloraz is currently the only postharvest fungicide registered in Israel and Europe in avocado fruits. Due to its unfavorable toxicological properties, prochloraz will be banned from the end of 2020 for future postharvest usage and therefore a substitute candidate is urgently warranted. Fludioxonil, a relatively safe, wide spectrum fungicide, is approved in Europe and Israel for postharvest use in various fruits, but not avocado. Hence, fludioxonil has been evaluated in the present study as a potential substitute for prochloraz in avocado. The objectives of the present study were to determine fludioxonil efficacy against common fungal infestations in avocado and distribution kinetics between peel and pulp in comparison to prochloraz. At the same concentration range (75-300 µg/L), fludioxonil was as effective as prochloraz in inhibiting postharvest decay, while in the early season cultivars, suffering mainly from stem-end rot, it exhibited a better decay control than prochloraz. Fludioxonil and prochloraz displayed negligible and undetected pulp levels, respectively, due to low peel penetrability. Taken altogether, fludioxonil was found to be a suitable candidate for replacing prochloraz as a postharvest fungicide in avocado.

14.
New Phytol ; 225(4): 1788-1798, 2020 02.
Article En | MEDLINE | ID: mdl-31598980

Fruit defense against pathogens relies on induced and preformed mechanisms. The present contribution evaluated performed resistance of red and green mango fruit against the fungal pathogen Colletotrichum gloeosporioides and identified the main active antifungal components. High-performance liquid chromatography analysis of nonhydrolyzed mango peel extracts identified major anthocyanin peaks of glycosylated cyanidin and methylcyanidin, and flavonol peaks of glycosylated quercetin and kaempferol, which were more abundant on the 'red side' of red mango fruit. Organic extracts of red vs green mango peel were more efficient in inhibiting C. gloeosporioides. Transcriptome analysis of the mango-C. gloeosporioides interaction showed increased expression of glucosidase genes related to both fungal pathogenicity and host defense. Glucosidase treatment of organic peel extract increased its antifungal activity. Additionally, quercetin and cyanidin had significantly higher antifungal activity than their glycosylated derivatives. Peel extract volatiles treated with glucosidase had antifungal activity. GCMS analysis identified 15 volatiles after glucosidase hydrolysis, seven of them present only in red fruit. These results suggest that the fruit obtains a concealed arsenal of glycosylated flavonoids in its peel when they are hydrolyzed by ß-glucosidase that is induced in both fungus and host during infection process, become more toxic to the fungal pathogen, inhibiting decay development.


Colletotrichum/drug effects , Flavonoids/pharmacology , Fruit/chemistry , Mangifera/chemistry , Plant Extracts/pharmacology , Flavonoids/chemistry , Mangifera/microbiology , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry
15.
Microorganisms ; 7(6)2019 Jun 15.
Article En | MEDLINE | ID: mdl-31208074

Penicillium expansum is a major postharvest pathogen that infects different fruits, mainly through injuries inflicted during harvest or subsequent handling after harvest. Several effectors were suggested to mediate pathogenicity of P. expansum in fruit tissue. Among these effectors Nep1-like proteins (NLPs), produced by various microorganisms with different lifestyles, are known for their ability to induce necrosis in dicot plants and were shown to be involved in virulence of several plant-related pathogens. This study was aimed at the identification and functional characterization of two NLP genes found in the genome of P. expansum. The genes were designated Penlp1 and Penlp2 and were found to code type1 and type3 NLP respectively. Necrosis-inducing activity of the two proteins was demonstrated by transient expression in Nicotiana benthamiana leaves. While Penlp1 expression was induced during apple infection and in liquid culture, the highest level of Penlp2 expression was found in ungerminated spores. Deletion of Penlp1, but not Penlp2, resulted in reduced virulence on apples manifested by reduced rate of lesion development (disease severity).

16.
Sci Rep ; 9(1): 1948, 2019 02 13.
Article En | MEDLINE | ID: mdl-30760867

Mango quarantine is based mainly on heat treatment, with a possible deterioration of fruit quality. We studied the effects of cold quarantine (19 days storage at 2 °C) on fruit quality of commercial mango cvs. Keitt and Shelly for three consecutive years. Chilling injury (CI) occurs in mango fruit stored at temperatures lower than 12 °C. By reanalysing our previous transcriptome, we found that under sub-optimal temperature storage (5 °C), the fruit increases its ethylene biosynthesis and osmolarity by activating sugar metabolism, thereby probably reducing its freezing point. Similarly, ripe fruit with higher sugar concentration should be more resistant to cold-storage stress. Here, mango fruit was artificially ripened with 150 ppm ethylene. The control group, stored at 2 °C, suffered from severe CI, whereas the combined treatment of artificial ripening, modified atmosphere (fruit were enclosed in perforated bags) and subsequent low-temperature conditioning resulted in a significant reduction in CI to satisfactory levels for consumer acceptance (taste, aroma and texture). The combined treatment reduced lipid peroxidation and maintained flavour, leading to a novel cold-quarantine treatment for mango fruit. Thus, by reversing the supply chain and storing ripe and ready-to-eat fruit, cold quarantine was enabled for mango, and possibly other chilling-susceptible fruits.


Food Storage/methods , Mangifera/metabolism , Animals , Cold Temperature , Drosophila/pathogenicity , Fruit/metabolism , Insect Repellents , Quarantine
17.
Molecules ; 23(7)2018 Jul 23.
Article En | MEDLINE | ID: mdl-30041447

Red fruits were suggested to be tolerant to cold. To understand cold-storage tolerance of red mango fruit that were subjected to sunlight at the orchard, mango cv. Shelly from inside (green fruit) or outside (red fruit) the tree canopy was stored for 3 weeks at 5, 8 or 12 °C and examined for flavonoids, antioxidant, volatiles and tolerance to biotic and abiotic stress. Red fruit from the outer canopy showed significant increases in total anthocyanin and flavonoids, and antioxidant activity. Ripening parameters for red and green mango fruit were similar at harvest and during storage. However, red fruit with high anthocyanin and flavonoid contents were more tolerant to biotic and abiotic stresses. After 3 weeks of suboptimal cold storage, green fruit showed significantly more lipid peroxidation and developed significantly more chilling-injury symptoms-black spots and pitting-than red fruit. Volatiles of red and green peels revealed significant modulations in response to cold-storage. Moreover, red fruit were more tolerant to biotic stress and had reduced general decay incidence. However, during long storage at 10 °C for 4, 5 or 6 weeks, red fruit showed a non-significant reduction in decay and chilling injuries. These results suggest new approaches to avoiding chilling injury during cold storage.


Adaptation, Biological , Anthocyanins/chemistry , Cold Temperature , Flavonoids/chemistry , Fruit/chemistry , Fruit/physiology , Mangifera/chemistry , Mangifera/physiology , Gas Chromatography-Mass Spectrometry , Lipid Peroxidation , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Stress, Physiological , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
18.
J Agric Food Chem ; 65(3): 632-638, 2017 Jan 25.
Article En | MEDLINE | ID: mdl-28075566

Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-ß-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C6 and C9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.


Aldehydes/chemistry , Mangifera/metabolism , alpha-Linolenic Acid/metabolism , Aldehydes/metabolism , Cold Temperature , Food Storage , Fruit/chemistry , Fruit/metabolism , Mangifera/chemistry , Molecular Structure , Oxidation-Reduction , Volatilization , alpha-Linolenic Acid/chemistry
19.
Front Plant Sci ; 7: 1579, 2016.
Article En | MEDLINE | ID: mdl-27812364

Cold storage is considered the most effective method for prolonging fresh produce storage. However, subtropical fruit is sensitive to cold. Symptoms of chilling injury (CI) in mango include red and black spots that start from discolored lenticels and develop into pitting. The response of 'Keitt' mango fruit to chilling stress was monitored by transcriptomic, physiological, and microscopic analyses. Transcriptomic changes in the mango fruit peel were evaluated during optimal (12°C) and suboptimal (5°C) cold storage. Two days of chilling stress upregulated genes involved in the plant stress response, including those encoding transmembrane receptors, calcium-mediated signal transduction, NADPH oxidase, MAP kinases, and WRKYs, which can lead to cell death. Indeed, cell death was observed around the discolored lenticels after 19 days of cold storage at 5°C. Localized cell death and cuticular opening in the lumen of discolored lenticels were correlated with increased general decay during shelf-life storage, possibly due to fungal penetration. We also observed increased phenolics accumulation around the discolored lenticels, which was correlated with the biosynthesis of phenylpropanoids that were probably transported from the resin ducts. Increased lipid peroxidation was observed during CI by both the biochemical malondialdehyde method and a new non-destructive luminescent technology, correlated to upregulation of the α-linolenic acid oxidation pathway. Genes involved in sugar metabolism were also induced, possibly to maintain osmotic balance. This analysis provides an in-depth characterization of mango fruit response to chilling stress and could lead to the development of new tools, treatments and strategies to prolong cold storage of subtropical fruit.

20.
PLoS One ; 10(10): e0140522, 2015.
Article En | MEDLINE | ID: mdl-26501421

Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars 'Hass' and 'Ettinger' for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 µM MJ for Hass or 10 µM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect 'Hass' and 'Ettinger' avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine.


Food Storage/methods , Fruit/standards , Persea , Acetates/pharmacology , Cold Temperature/adverse effects , Cyclopentanes/pharmacology , Food Quality , Fruit/drug effects , Oxylipins/pharmacology , Persea/drug effects
...