Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Entomol ; 53(2): 249-258, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38309712

RESUMEN

Knowledge of insect pest ecology and biology is important for maximizing crop protection and reducing crop losses. Currently, we lack an efficient control program for the cocoa mirid Sahlbergella singularis Haglund (Hemiptera: Miridae), the principal insect pest of cocoa in West and Central Africa. A 2-yr study was conducted in 11 plantations across Ayos and Konye, two of the largest cocoa growing areas of Cameroon. We evaluated the effects of mirid sex pheromone and climatic variations on mirid population dynamics and their associated cocoa damage. Sex pheromone traps caught 1.5-fold higher mirids in Ayos than in Konye, with more overall counts in 2015 than in 2016. Cocoa pod counts were also significantly higher in 2015 than in 2016 and were negatively correlated with temperature and relative humidity. In both localities, mirid populations and associated cocoa pod damage were suppressed in plantations where sex pheromone traps were used. Damage incidence was positively correlated with mirid counts, confirming that the cocoa pod is the preferential site for mirid feeding and reproduction. As such, damage incidence could be used as proxy for comparative mirid population level due to the mirid's cryptic habit. Of the recorded weather variables, only relative humidity was correlated (negatively) with damage severity. Our data on the relationships between damage caused by mirids and their population dynamics and sex pheromone trap catches suggest that an effective control strategy using mass trapping could be developed for mirid management in cocoa plantations.


Asunto(s)
Cacao , Hemípteros , Heterópteros , Atractivos Sexuales , Animales , Feromonas , Camerún , Control de Insectos
2.
J Sci Food Agric ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37969044

RESUMEN

BACKGROUND: Retting is a key step of cassava processing into widely consumed foods (fufu, chikwangue, miondo and bobolo) in sub-Saharan Africa. For some populations, retting ability is a major quality criterion that drives the adoption of new cassava varieties. Despite this importance, the physiological basis associated with this process remains poorly understood, and should lead to improved screening tools for breeding. Eight cassava varieties contrasting in retting ability properties were used in the present study. Roots and soaking water were sampled during retting and characterized at both histological and biochemical levels. RESULTS: Histological data highlighted the degradation of root cell wall during retting. The average pH of soaking water decreased from 5.94 to 4.31 and the average simple sugars decreased from 0.18 to 0 g L-1 , whereas the organic acids increased up to 5.61 g L-1 . In roots tissue, simple sugars and organic acid contents decreased from 22.9 to 0 g kg-1 and from 80 to 0 g kg-1 , respectively. The total pectin content of roots among varieties at harvest was similar, and decreased during the retting process. Overall, there was a negative correlation between total pectins content and root softening, although this did not reach statistical significance. CONCLUSION: Major histological and biochemical changes occurred during cassava root retting, with some of them associated with the process. Retting affected starch pasting properties more than starch content. Although this process is characterized by root softening and degradation of cell wall structure, the present study strongly suggested that pectin is not the only cell wall component involved in these changes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Insects ; 13(11)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36421948

RESUMEN

Bactrocera dorsalis and several Africa-native Ceratitis species are serious constraints to fruit production in sub-Saharan Africa. A long-term trapping and fruit collection study was conducted (2011-2016) in two contrasting agro-ecological zones (AEZs) of Cameroon to determine fruit fly species composition, seasonality, attraction to various lures and baits, and fruit infestation levels. Ten tephritid species from genera Bactrocera, Ceratitis, Dacus, and Perilampsis were captured in traps. Bactrocera dorsalis was the most dominant of the trapped species and persisted throughout the year, with peak populations in May-June. Ceratitis spp. were less abundant than B. dorsalis, with Ceratitis anonae dominating in the western highland zone and Ceratitis cosyra in the humid forest zone. Methyl eugenol and terpinyl acetate captured more B. dorsalis and Ceratitis spp., respectively than Torula yeast. The latter was the most effective food bait on all tephritid species compared with BioLure and Mazoferm. Bactrocera dorsalis was the dominant species emerging from incubated fruits, particularly mango, guava, and wild mango. Four plant species-I. wombolu, Dacryodes edulis, Voacanga Africana and Trichoscypha abut-were new host records for B. dorsalis. This study is the first long-duration and comprehensive assessment of frugivorous tephritid species composition, fruit infestations, and seasonality in Central Africa.

4.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567207

RESUMEN

Banana bunchy top disease (BBTD), caused by the banana bunchy top virus (BBTV, genus Babuvirus), is the most destructive viral disease of banana and plantain (Musa spp.). The virus is transmitted persistently by the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae). While research efforts have focused on screening Musa genotypes for BBTD resistance, comparatively little work has been carried out to identify resistance to banana aphids. This study assessed 44 Musa germplasm of different A and B genome composition for the performance of banana aphids under semicontrolled environmental screenhouse conditions and in a field trial established in a BBTD endemic location. In the screenhouse, the AA diploid Calcutta 4 had the lowest apterous aphid density per plant (9.7 ± 4.6) compared with AAB triploid Waema, which had the highest aphid densities (395.6 ± 20.8). In the field, the highest apterous aphid density per plant (29.2 ± 6.7) occurred on the AAB triploid Batard and the lowest (0.4 ± 0.2) on the AA diploid Pisang Tongat. The AA diploid Tapo was highly susceptible to BBTD (100% infection) compared with the genotypes Balonkawe (ABB), PITA 21 (AAB), Calcutta 4 (AA), and Balbisiana Los Banos (BB), which remained uninfected. The Musa genotypes with apparent resistance to BBTD and least susceptibility to aphid population growth provide options for considering aphid and BBTD resistance in banana and plantain breeding programs.

5.
Front Microbiol ; 12: 687103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630342

RESUMEN

Globally, the expansion of livestock and fisheries production is severely constrained due to the increasing costs and ecological footprint of feed constituents. The utilization of black soldier fly (BSF) as an alternative protein ingredient to fishmeal and soybean in animal feed has been widely documented. The black soldier fly larvae (BSFL) used are known to voraciously feed and grow in contaminated organic wastes. Thus, several concerns about their safety for inclusion into animal feed remain largely unaddressed. This study evaluated both culture-dependent sequence-based and 16S rDNA amplification analysis to isolate and identify bacterial species associated with BSFL fed on chicken manure (CM) and kitchen waste (KW). The bacteria species from the CM and KW were also isolated and investigated. Results from the culture-dependent isolation strategies revealed that Providencia sp. was the most dominant bacterial species detected from the guts of BSFL reared on CM and KW. Morganella sp. and Brevibacterium sp. were detected in CM, while Staphylococcus sp. and Bordetella sp. were specific to KW. However, metagenomic studies showed that Providencia and Bordetella were the dominant genera observed in BSFL gut and processed waste substrates. Pseudomonas and Comamonas were recorded in the raw waste substrates. The diversity of bacterial genera recorded from the fresh rearing substrates was significantly higher compared to the diversity observed in the gut of the BSFL and BSF frass (leftovers of the rearing substrates). These findings demonstrate that the presence and abundance of microbiota in BSFL and their associated waste vary considerably. However, the presence of clinically pathogenic strains of bacteria in the gut of BSFL fed both substrates highlight the biosafety risk of potential vertical transmission that might occur, if appropriate pre-and-postharvest measures are not enforced.

6.
Sci Rep ; 11(1): 7394, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795808

RESUMEN

Cassava is a key food security crop in Central Africa, but its production depends largely on the use of local farmers' varieties characterized by inherently low yield which is compounded by generally high susceptibility to various growth and yield-limiting pests and diseases. Improved cassava genotypes have demonstrated the potential to substantially improve cassava's contribution to food security and the development of the cassava industry and the improvement of nutrition status elsewhere in Western Africa. Eleven improved cassava genotypes were compared with a local landrace (LMR) used as a check under field conditions over two years in eight locations, grouped in four agro-ecologies in Cameroon. Pest and disease abundance/incidence and damage severity were evaluated. At harvest, root yield and carotenoid content were measured. Best linear unbiased predictors showed the lowest breeding value for LMR with the cassava mosaic virus disease (+ 66.40 ± 2.42) compared with 1.00 ± 0.02% for the most susceptible improved genotype. Two genotypes (I010040-27 and I011797) stood out for having higher predicted fresh root yield means which were at least 16 times greater compared with LMR. Predicted total carotenoid content was the highest (+ 5.04 ± 0.17) for improved genotype I070593 compared with LMR which showed the lowest (- 3.90 ± 0.06%) and could contribute to the alleviation of vitamin A deficiency from cassava-based food systems. Diffusion of high-yielding and nutritious genotypes could alleviate food and nutritional security in Central Africa.


Asunto(s)
Ecología , Genotipo , Manihot/genética , Fitomejoramiento , África Central , África Occidental , Agricultura/métodos , Biomasa , Camerún , Carotenoides/metabolismo , Agricultores , Alimentos , Geografía , Concentración de Iones de Hidrógeno , Modelos Lineales , Suelo
7.
Insects ; 12(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804807

RESUMEN

The present study is the first modeling effort at a global scale to predict habitat suitability of fall armyworm (FAW), Spodoptera frugiperda and its key parasitoids, namely Chelonus insularis, Cotesia marginiventris,Eiphosoma laphygmae,Telenomus remus and Trichogramma pretiosum, to be considered for biological control. An adjusted procedure of a machine-learning algorithm, the maximum entropy (Maxent), was applied for the modeling experiments. Model predictions showed particularly high establishment potential of the five hymenopteran parasitoids in areas that are heavily affected by FAW (like the coastal belt of West Africa from Côte d'Ivoire (Ivory Coast) to Nigeria, the Congo basin to Eastern Africa, Eastern, Southern and Southeastern Asia and some portions of Eastern Australia) and those of potential invasion risks (western & southern Europe). These habitats can be priority sites for scaling FAW biocontrol efforts. In the context of global warming and the event of accidental FAW introduction, warmer parts of Europe are at high risk. The effect of winter on the survival and life cycle of the pest in Europe and other temperate regions of the world are discussed in this paper. Overall, the models provide pioneering information to guide decision making for biological-based medium and long-term management of FAW across the globe.

8.
J Therm Biol ; 97: 102877, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33863442

RESUMEN

The oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) is a major pest of fruit and vegetable production systems on several continents. The pest has invaded many countries, causing considerable impact on fruit production systems and commercialization. In this study we determined the relationship between temperature and development, survival and reproductive parameters of B. dorsalis on an artificial diet under laboratory conditions under 7 constant temperatures (10, 15, 20, 25, 30, 33 and 35 °C) with 70 ± 10% relative humidity and a photoperiod of L12:D12. We validated the laboratory results with a full life table analysis under semi-natural conditions in a screenhouse. We used the Insect Life Cycle Modeling (ILCYM) software for all mathematical models and simulations applied to all life history parameters. Bactrocera dorsalis completed its development at temperatures ranging between 15 and 33 °C with the mean developmental time of egg, larva, and pupa ranging between 1.46 and 4.31 days, 7.14-25.67 days, and 7.18-31.50 respectively. The models predicted temperatures ranging between 20 and 30 °C as favorable for development and survival, and 20 to 25 °C for optimal fecundity of B. dorsalis. Life table parameters showed the highest gross reproductive rate (GRR), net reproductive rate (Ro), intrinsic rate of increase (rm), and finite rate of increase (λ) between 25 and 31 ᵒC while generation time (T) and doubling time (Dt) were low at this interval. The effects of future climate change on B. dorsalis life history parameters were further investigated and the outcome from this study will help in the management of B. dorsalis in different agroecologies in the context of ongoing climate change.


Asunto(s)
Modelos Biológicos , Temperatura , Tephritidae , Animales , Femenino , Masculino , Reproducción , Estaciones del Año , Tephritidae/crecimiento & desarrollo , Tephritidae/fisiología
9.
Front Plant Sci ; 11: 574592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072150

RESUMEN

Black soldier fly frass fertilizer (BSFFF) is increasingly gaining momentum worldwide as organic fertilizer. However, research on its performance on crop production remains largely unknown. Here, we evaluate the comparative performance of BSFFF and commercial organic fertilizer (SAFI) on maize (H513) production. Both fertilizers were applied at the rates of 0, 2.5, 5, and 7.5 t ha-1, and 0, 30, 60, and 100 kg nitrogen (N) ha-1. Mineral fertilizer (urea) was also applied at 0, 30, 60 and 100 kg N ha-1 to establish the N fertilizer equivalence (NFE) of the organic fertilizers. Maize grown in plots treated with BSFFF had the tallest plants and highest chlorophyll concentrations. Plots treated with 7.5 t ha-1 of BSFFF had 14% higher grain yields than plots treated with a similar rate of SAFI. There was a 27% and 7% increase in grain yields in plots treated with 100 kg N ha-1 of BSFFF compared to those treated with equivalent rates of SAFI and urea fertilizers, respectively. Application of BSFFF at 7.5 t ha-1 significantly increased N uptake by up to 23% compared to the equivalent rate of SAFI. Likewise, application of BSFFF at 100 kg N ha-1 increased maize N uptake by 76% and 29% compared to SAFI and urea, respectively. Maize treated with BSFFF at 2.5 t ha-1 and 30 kg N ha-1 had higher nitrogen recovery efficiencies compared to equivalent rates of SAFI. The agronomic N use efficiency (AEN) of maize treated with 2.5 t ha-1 of BSFFF was 2.4 times higher than the value achieved using an equivalent rate of SAFI. Also, the AEN of maize grown using 30 kg N ha-1 was 27% and 116% higher than the values obtained using equivalent rates of SAFI and urea fertilizers, respectively. The NFE of BSFFF (108%) was 2.5 times higher than that of SAFI. Application rates of 2.5 t ha-1 and 30 kg N ha-1 of BSFFF were found to be effective in improving maize yield, while double rates of SAFI were required. Our findings demonstrate that BSFFF is a promising and sustainable alternative to commercial fertilizers for increased maize production.

10.
PLoS One ; 15(8): e0238154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32853236

RESUMEN

Black soldier fly (BSF) (Hermetia illucens L.) is one of the most efficient bio-waste recyclers. Although, waste substrate amendments with biochar or gypsum during composting process are known to enhance nutrient retention, their impact on agro-industrial waste have not been documented. Hence, this study focuses on a comparative effect of agro-industrial waste amended with biochar and gypsum on BSF larval performance, waste degradation, and nitrogen (N) and potassium retention in frass fertilizer. Brewery spent grain was amended with biochar or gypsum at 0, 5, 10, 15 and 20% to determine the most effective rates of inclusion. Amending feedstock with 20% biochar significantly increased wet (89%) and dried (86%) larval yields than the control (unamended feedstock). However, amendment with 15% gypsum caused decrease in wet (34%) and dried (30%) larval yields but conserved the highest amount of N in frass. Furthermore, the inclusion of 20% biochar recorded the highest frass fertilizer yield and gave a 21% increase in N retention in frass fertilizer, while biomass conversion rate was increased by 195% compared to the control. Feedstock amendment with 5% biochar had the highest waste degradation efficiency. Potassium content in frass fertilizer was also significantly enhanced with biochar amendment. At maturity, frass compost with more than 10% inclusion rate of biochar had the highest cabbage seed germination indices (>100%). The findings of this study revealed that initial composting of biochar amended feedstocks using BSF larvae can significantly shorten compost maturity time to 5 weeks with enhanced nutrient recycling compared to the conventional composting methods.


Asunto(s)
Carbón Orgánico/química , Larva/crecimiento & desarrollo , Simuliidae/crecimiento & desarrollo , Animales , Biomasa , Compostaje/métodos , Fertilizantes , Residuos Industriales , Nitrógeno/química , Suelo/química
11.
Front Microbiol ; 11: 1538, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774330

RESUMEN

The utilization of the black soldier fly (BSF) Hermetia illucens L. for recycling organic waste into high-quality protein and fat biomass for animal feeds has gained momentum worldwide. However, information on the genetic diversity and environmental implications on safety of the larvae is limited. This study delineates genetic variability and unravels gut microbiome complex of wild-collected and domesticated BSF populations from six continents using mitochondrial COI gene and 16S metagenomics. All sequences generated from the study linked to H. illucens accessions KM967419.1, FJ794355.1, FJ794361.1, FJ794367.1, KC192965.1, and KY817115.1 from GenBank. Phylogenetic analyses of the sequences generated from the study and rooted by GenBank accessions of Hermetia albitarsis Fabricius and Hermetia sexmaculata Macquart separated all samples into three branches, with H. illucens and H. sexmaculata being closely related. Genetic distances between H. illucens samples from the study and GenBank accessions of H. illucens ranged between 0.0091 and 0.0407 while H. sexmaculata and H. albitarsis samples clearly separated from all H. illucens by distances of 0.1745 and 0.1903, respectively. Genetic distance matrix was used to generate a principal coordinate plot that further confirmed the phylogenetic clustering. Haplotype network map demonstrated that Australia, United States 1 (Rhode Island), United States 2 (Colorado), Kenya, and China shared a haplotype, while Uganda shared a haplotype with GenBank accession KC192965 BSF from United States. All other samples analyzed had individual haplotypes. Out of 481,695 reads analyzed from 16S metagenomics, four bacterial families (Enterobactereaceae, Dysgonomonadaceae, Wohlfahrtiimonadaceae, and Enterococcaceae) were most abundant in the BSF samples. Alpha-diversity, as assessed by Shannon index, showed that the Kenyan and Thailand populations had the highest and lowest microbe diversity, respectively; while microbial diversity assessed through Bray Curtis distance showed United States 3 (Maysville) and Netherlands populations to be the most dissimilar. Our findings on genetic diversity revealed slight phylogeographic variation between BSF populations across the globe. The 16S data depicted larval gut bacterial families with economically important genera that might pose health risks to both animals and humans. This study recommends pre-treatment of feedstocks and postharvest measures of the harvested BSF larvae to minimize risk of pathogen contamination along the insect-based feed value chain.

12.
Foods ; 9(5)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375385

RESUMEN

Edible insects are increasingly being considered as food and feed ingredients because of their rich nutrient content. Already, edible insect farming has taken-off in Africa, but quality and safety concerns call for simple, actionable hazard control mechanisms. We examined the effects of traditional processing techniques-boiling, toasting, solar-drying, oven-drying, boiling + oven-drying, boiling + solar-drying, toasting + oven-drying, toasting + solar-drying-on the proximate composition and microbiological quality of adult Acheta domesticus and Ruspolia differens, the prepupae of Hermetia illucens and 5th instar larvae of Spodoptera littoralis. Boiling, toasting, and drying decreased the dry matter crude fat by 0.8-51% in the order: toasting > boiling > oven-drying > solar-drying, whereas the protein contents increased by 1.2-22% following the same order. Boiling and toasting decreased aerobic mesophilic bacterial populations, lowered Staphylococcus aureus, and eliminated the yeasts and moulds, Lac+ enteric bacteria, and Salmonella. Oven-drying alone marginally lowered bacterial populations as well as yeast and moulds, whereas solar-drying alone had no effect on these parameters. Oven-drying of the boiled or toasted products increased the aerobic mesophilic bacteria counts but the products remained negative on Lac+ enteric bacteria and Salmonella. Traditional processing improves microbial safety but alters the nutritional value. Species- and treatment-specific patterns exist.

13.
BMC Ecol ; 20(1): 13, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103743

RESUMEN

BACKGROUND: A long-term experiment at two trial sites in Kenya has been on-going since 2007 to assess the effect of organic and conventional farming systems on productivity, profitability and sustainability. During these trials the presence of significant numbers of termites (Isoptera) was observed. Termites are major soil macrofauna and within literature they are either depict as 'pests' or as important indicator for environmental sustainability. The extent by which termites may be managed to avoid crop damage, but improve sustainability of farming systems is worthwhile to understand. Therefore, a study on termites was added to the long-term experiments in Kenya. The objectives of the study were to quantify the effect of organic (Org) and conventional (Conv) farming systems at two input levels (low and high) on the abundance, incidence, diversity and foraging activities of termites. RESULTS: The results showed higher termite abundance, incidence, activity and diversity in Org-High compared to Conv-High, Conv-Low and Org-Low. However, the termite presence in each system was also dependent on soil depth, trial site and cropping season. During the experiment, nine different termite genera were identified, that belong to three subfamilies: (i) Macrotermitinae (genera: Allodontotermes, Ancistrotermes, Macrotermes, Microtermes, Odontotermes and Pseudocanthotermes), (ii) Termitinae (Amitermes and Cubitermes) and (iii) Nasutitiermitinae (Trinervitermes). CONCLUSIONS: We hypothesize that the presence of termites within the different farming systems might be influenced by the types of input applied, the soil moisture content and the occurrence of natural enemies. Our findings further demonstrate that the organic high input system attracts termites, which are an important, and often beneficial, component of soil fauna. This further increases the potential of such systems in enhancing sustainable agricultural production in Kenya.


Asunto(s)
Isópteros , Agricultura , Animales , Biodiversidad , Kenia , Agricultura Orgánica , Suelo
14.
Front Nutr ; 7: 537915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33511150

RESUMEN

Edible crickets are among the praised insects that are gaining recognition as human food and livestock feed with a potential of contributing to food security and reduction of malnutrition. Globally, the sustainable use of crickets as food or feed is undermined by lack of information on the number of the edible crickets, the country where they are consumed, and the developmental stages consumed. Furthermore, lack of data on their nutritional content and the potential risks to potential consumers limits their consumption or inclusion into other food sources. We reviewed published literature on edible cricket species, countries where they are consumed, and the stage at which they are consumed. We further reviewed information on their nutritional content, the safety of cricket consumption, and the sensory qualities of the edible crickets. We also looked at other benefits derived from the crickets, which include ethnomedicine, livestock feed, pest management strategies, contribution to economic development, and livelihood improvement, particularly in terms of use as food preservatives and use within music, sports, and cultural entomology. Lastly, we reviewed information on the farming of edible crickets. In this review, we report over 60 cricket species that are consumed in 49 countries globally. Nutritionally, crickets are reported to be rich in proteins, ranging from 55 to 73%, and lipids, which range from 4.30 to 33.44% of dry matter. The reported amount of polyunsaturated fatty acids (PUFA) is 58% of the total fatty acids. Edible crickets contain an appreciable amount of macro- and micro-mineral elements such as calcium, potassium, magnesium, phosphorus, sodium, iron, zinc, manganese, and copper. Also, the crickets are rich in the required amount of vitamins such as B group vitamins and vitamins A, C, D, E, and K. Overall, the cricket species examined in this review are safe to be consumed, and they display high proximate content that can replace plant and livestock products. The crickets play valuable roles in contributing to the economies of many countries and livelihoods, and they have medicinal and social benefits. This review is expected to promote greater recognition of crickets as a source of food, feed, and other benefits in the world and encourage up-scaling by farming them for sustainable utilization.

15.
J Econ Entomol ; 113(2): 860-871, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31853545

RESUMEN

Food baits are effective and widely used tools for monitoring diversity and abundance of tephritid fruit flies. Four food-baits-Nulure, BioLure, Mazoferm at 3 and 6%, and Torula yeast-were used in multi-lure traps over a 4-yr period in mango orchards in three Benin agro-ecological zones (AEZ) representing a large swath of environments in western Africa. Twelve tephritid fruit fly species were captured during the trials, with the highest richness in the Forest Savannah Mosaic (FSM), followed by the Southern Guinea Savannah (SGS), and the Northern Guinea Savannah (NGS) AEZ. Despite previous reports of displacement, the native species Ceratitis cosyra remained the dominant tephritid species in mango orchards in the NGS, with the invasive and exotic species Bactrocera dorsalis dominating the tephritid fauna in the SGS and FSM. Torula yeast captured the greatest number of fruit flies in each AEZ. Mazoferm-3% captures were similar to Torula yeast, except for lower captures in the NGS where it tended to harden. The rank order of relative efficiency indices (REI) of the food baits (relative to Torula yeast) is Mazoferm-3% > Nulure > Mazoferm-6% and BioLure. The latter captured more Ceratitis spp. than all the other baits, particularly at very low Ceratitis spp. abundance. To our knowledge, the study is the first to report relative efficiency indices for the selection of food baits in monitoring diversity and abundance of fruit flies. Ecological and practical implications for the use of food baits in comparison with male lures are discussed.


Asunto(s)
Mangifera , Tephritidae , Animales , Benin , Drosophila , Alimentos , Control de Insectos , Masculino
16.
Bull Entomol Res ; 110(2): 293-301, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31571552

RESUMEN

Stictococcus vayssierei is a major pest of root and tuber crops in central Africa. However, data on its ecology are lacking. Here we provide an updated estimate of its distribution with the aim of facilitating the sustainable control of its populations. Surveys conducted in nine countries encompassing 13 ecological regions around the Congo basin showed that African root and tuber scale was present in Cameroon, Central African Republic, Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon and Uganda. It was not found on the sites surveyed in Chad and Nigeria. The pest occurred in the forest and the forest-savannah mosaic as well as in the savannah where it was never recorded before. However, prevalence was higher in the forest (43.1%) where cassava was the most infested crop, compared to the savannah (9.2%) where aroids (cocoyam and taro) were the most infested crops. In the forest habitat, the pest was prevalent in all but two ecological regions: the Congolian swamp forests and the Southern Congolian forest-savanna mosaic. In the savannah habitat, it was restricted to the moist savannah highlands and absent from dry savannahs. The scale was not observed below 277 m asl. Where present, the scale was frequently (87.1% of the sites) attended by the ant Anoplolepis tenella. High densities (>1000 scales per plant) were recorded along the Cameroon-Gabon border. Good regulatory measures within and between countries are required to control the exchange of plant materials and limit its spread. The study provides information for niche modeling and risk mapping.


Asunto(s)
Distribución Animal , Hemípteros , África Central , Animales , Araceae , Productos Agrícolas , Femenino , Manihot , Densidad de Población
17.
J Insect Sci ; 19(6)2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853552

RESUMEN

Insects are potential ingredients for animal feed and human food. Their suitability may be influenced by species and nutritional value. This study was aimed at determining the nutritional profile of four insects: Dipterans; black soldier fly (Hermetia illucens Linnaeus) family stratiomyidae and blue calliphora flies (Calliphora vomitoria Linnaeus) family Calliphoridae; and orthopterans; crickets (Acheta domesticus Linnaeus) family Gryllidae and grasshoppers (Ruspolia nitidula Linnaeus) family Tettigoniidae to establish their potential as alternative protein sources for animals (fish and poultry) and humans. Gross energy, crude protein, crude fat, crude fiber, carbohydrates, and total ash were in the ranges of 2028.11-2551.61 kJ/100 g, 44.31-64.90, 0.61-46.29, 5.075-16.61, 3.43-12.27, and 3.23-8.74 g/100 g, respectively. Hermetia illucens had the highest energy and ash content; C. vomitoria were highest in protein and fiber content, R. nitidula were highest in fat, whereas A. domesticus had the highest carbohydrate content. All insects had essential amino acids required for poultry, fish, and human nutrition. The arginine to lysine ratios of H. illucens, C. vomitoria, A. domesticus, and R. nitidula were 1.45, 1.06, 1.06, and 1.45, respectively. The fatty acids comprised of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs). Palmitic acid (23.6-38.8 g/100 g of total fat) was the most abundant SFA, exception R. nitidula with 14 g/100 g stearic acid. Linoleic acid (190-1,723 mg/100 g) and linolenic acid (650-1,903 mg/100 g) were the most abundant PUFAs. Only C. vomitoria had docosahexaenoic acid. The study indicates that the insects studied are rich in crude protein and other nutrients and can potentially be used for human and animal (fish and poultry) feeding.


Asunto(s)
Insectos Comestibles/química , Valor Nutritivo , Aminoácidos/análisis , Animales , Ácidos Grasos/análisis , Uganda
18.
Insects ; 10(10)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652540

RESUMEN

Termite-induced injuries to maize and baby corn were evaluated in on-going comparison experiments on organic and conventional farming systems at two trial sites in the Central Highlands of Kenya (Chuka and Thika). The farming systems were established in 2007 at two input levels: Low input level, representing subsistence farming (Conv-Low, Org-Low) and high input level, representing commercial farming (Conv-High, Org-High). Termite-induced injuries to maize and baby corn, such as tunneling the stem or lodging the whole plant were assessed over two cropping seasons. The lodging occurred exclusively at Thika. It first became apparent in the Org-Low system, with most of lodging occurring during the vegetative stage. Baby corn grown under high input systems showed increasing lodging from the late vegetative crop stage and peaked before the final harvest. Tunneling was recorded at both sites, but was generally below 5%, with no significant differences between the farming systems. Overall, the injury patterns caused by termites appear to be a function of the plant growth stage, termite colony activities, trial site, and the types and levels of fertilizer input. Thus, the management practice used in each farming system (organic or conventional) might have greater influence on crop injuries than the type of farming system itself or the termite abundance within each system.

19.
Animals (Basel) ; 9(10)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31546995

RESUMEN

Pig production is one of the fastest growing livestock sectors. Development of this sector is hampered by rapidly increasing costs of fishmeal (FM), which is a common protein source in animal feeds. Here, we explored the potential of substituting FM with black soldier fly larval meal (BSFLM) on growth and blood parameters of pigs as well as economic aspects. At weaning, 40 hybrid pigs, i.e., crossbreeds of purebred Large White and Landrace were randomly assigned to five iso-nitrogenous and iso-energetic dietary treatments: Control (0% BSFLM and 100% FM (T0)), and FM replaced at 25% (T25), 50% (T50), 75% (T75) and 100% (T100) with BSFLM. Average daily feed intake (ADFI), average daily gain (ADG), body weight gain (BWG) and feed conversion ratio (FCR) were calculated for the whole trial. Hematological and serum biochemical parameters, the cost-benefit ratio (CBR) and return on investment (RoI) were evaluated. No significant effect of diet type was observed on feed intake and daily weight gain. Red or white blood cell indices did not differ among diets. Pigs fed T25, T75 and T100, had lower platelet counts compared to T0 and T50. Dietary inclusion of BSFLM did not affect blood total cholesterol, triglycerides, low-density lipoprotein and high-density lipoprotein. CBR and RoI were similar for the various diets. In conclusion, BSFLM is a suitable and cost-effective alternative to fishmeal in feed for growing pigs.

20.
PLoS One ; 14(9): e0222941, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31553778

RESUMEN

Scapsipedus icipe Hugel and Tanga (Orthoptera: Gryllidae) is a newly described edible cricket species. Although, there is substantial interest in mass production of S. icipe for human food and animal feed, no information exists on the impact of temperature on their bionomics. Temperature-dependent development, survival, reproductive and life table parameters of S. icipe was generated and integrated into advanced Insect Life Cycle Modeling software to describe relative S. icipe population increase and spatial spread based on nine constant temperature conditions. We examined model predictions and implications for S. icipe potential distribution in Africa under current and future climate. These regions where entomophagy is widely practiced have distinctly different climates. Our results showed that S. icipe eggs were unable to hatch at 10 and 40°C, while emerged nymphs failed to complete development at 15°C. The developmental time of S. icipe was observed to decrease with increased in temperature. The lowest developmental threshold temperatures estimated using linear regressions was 14.3, 12.67 and 19.12°C and the thermal constants for development were 185.2, 1111.1- and 40.7-degree days (DD) for egg, nymph and pre-adult stages, respectively. The highest total fecundity (3416 individuals/female/generation), intrinsic rate of natural increase (0.075 days), net reproductive rate (1330.8 female/female/generation) and shortest doubling time (9.2 days) was recorded at 30°C. The regions predicted to be suitable by the model suggest that S. icipe is tolerant to a wider range of climatic conditions. Our findings provide for the first-time important information on the impact of temperature on the biology, establishment and spread of S. icipe across the Africa continent. The prospect of edible S. icipe production to become a new sector in food and feed industry is discussed.


Asunto(s)
Distribución Animal , Insectos Comestibles/fisiología , Gryllidae/fisiología , Modelos Biológicos , Temperatura , África Oriental , Animales , Femenino , Predicción , Tablas de Vida , Masculino , Ninfa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...