Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9213-9226, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748643

RESUMEN

The use of optical proxies is essential to the sustained monitoring of dissolved organic carbon (DOC) in estuaries and coastal wetlands, where dynamics occur on subhour time scales. In situ dissolved organic matter (DOM) fluorescence, or FDOM, is now routinely measured along with ancillary water-quality indicators by commercial sondes. However, its reliability as an optical proxy of DOC concentration is often limited by uncertainties caused by in situ interferences and by variability in DOM composition and water matrix (ionic strength, pH) that are typical at the land-ocean interface. Although corrections for in situ interferences already exist, validated strategies to account for changes in the DOM composition and water matrix in these systems are still lacking. The transferability of methods across systems is also poorly known. Here, we used a comprehensive data set of laboratory-based excitation-emission matrix fluorescence and DOC concentration matched to in situ sonde measurements to develop and compare approaches that leverage ancillary water-quality indicators to improve estimates of DOC concentration from FDOM. Our analyses demonstrated the validity of in situ interference correction schemes, the importance of ancillary water-quality indicators to account for DOM composition and water matrix change, and the good transferability of the proposed methods.


Asunto(s)
Carbono , Monitoreo del Ambiente , Estuarios , Humedales , Monitoreo del Ambiente/métodos , Fluorescencia
2.
Sci Total Environ ; 912: 168670, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37996032

RESUMEN

The photochemical degradation of chromophoric dissolved organic matter (CDOM) upon solar exposure, known as photobleaching, can significantly alter the optical properties of the surface ocean. By leading to the breakdown of UV- and visible-radiation-absorbing moieties within dissolved organic matter, photobleaching regulates solar heating, the vertical distribution of photochemical processes, and UV exposure and light availability to the biota in surface waters. Despite its biogeochemical and ecological relevance, this sink of CDOM remains poorly quantified. Efforts to quantify photobleaching globally have long been hampered by the inherent challenge of determining representative apparent quantum yields (AQYs) for this process, and by the resulting lack of understanding of their variability in natural waters. Measuring photobleaching AQY is made challenging by the need to determine AQY matrices (AQY-M) that capture the dual spectral dependency of this process (i.e., magnitude varies with both excitation wavelength and response wavelength). A new experimental approach now greatly facilitates the quantification of AQY-M for natural waters, and can help address this problem. Here, we conducted controlled photochemical experiments and applied this new approach to determine the AQY-M of 27 contrasting water samples collected globally along the land-ocean aquatic continuum (i.e., rivers, estuaries, coastal ocean, and open ocean). The experiments and analyses revealed considerable variability in the magnitude and spectral characteristics of the AQY-M among samples, with strong dependencies on CDOM composition/origin (as indicated by the CDOM 275-295-nm spectral slope coefficient, S275-295), solar exposure duration, and water temperature. The experimental data facilitated the development and validation of a statistical model capable of accurately predicting the AQY-M from three simple predictor variables: 1) S275-295, 2) water temperature, and 3) a standardized measure of solar exposure. The model will help constrain the variability of the AQY-M when modeling photobleaching rates on regional and global scales.

3.
Opt Express ; 31(21): 35178-35199, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859255

RESUMEN

In hydrological optics, "optical closure" means consistency between the apparent optical properties (AOPs) determined from radiometric measurements and those derived from radiative transfer modelling based on concurrently measured inherent optical properties (IOPs) and boundary conditions (sea and sky states). Good optical closure not only provides confidence in the data quality but also informs on the adequacy of the radiative transfer parameterization. Achieving optical closure in highly absorptive coastal waters is challenging due to the low signal-to-noise ratio of radiometric measurements and uncertainties in the measurements of IOPs, namely the spectral absorption and backscattering coefficients. Here, we present an optical closure assessment using a comprehensive set of in situ IOPs acquired in highly absorptive coastal waters optically dominated by chromophoric dissolved organic matter (CDOM). The spectral remote sensing reflectance, Rrs(λ), was modeled using the software HydroLight (HL) with measured IOPs and observed boundary conditions. Corresponding in-water in situ Rrs(λ) was derived from radiometric measurements made with a Compact Optical Profiling System (C-OPS; Biospherical). The assessment revealed that the inclusion of inelastic scattering processes in the model, specifically sun-induced CDOM fluorescence (fDOM) and sun-induced chlorophyll fluorescence (SICF) from Chlorophyll-a ([chl]), significantly improved the optical closure and led to good agreement between measured and modeled Rrs (i.e., for 440 ≤ λ ≤ 710 nm with no inelastic processes: R2=0.90, slope=0.64; with inelastic processes: R2=0.96, slope=0.90). The analysis also indicated that fDOM and SICF contributed a substantial fraction of the green-red wavelength Rrs in these waters. Specifically, fDOM contributed ∼18% of the modeled Rrs in the green region and SICF accounted for ∼20% of the modeled Rrs in the red region. Overall, this study points out the importance of accounting for fDOM in remote sensing applications in CDOM-dominated waters.

5.
Sci Data ; 10(1): 100, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797273

RESUMEN

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

6.
J Geophys Res Biogeosci ; 127(6): e2021JG006711, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35859986

RESUMEN

Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ecosystem traits. However, estimation of surface reflectance and atmospheric state is computationally challenging, and the terabyte data volumes of global missions will exceed available processing capacity. This article describes how missions can overcome this bottleneck using the spatial continuity of atmospheric fields. Contemporary imaging spectrometers oversample atmospheric spatial variability, so it is not necessary to invert every pixel. Spatially sparse solutions can train local linear emulators that provide fast, exact inversions in their vicinity. We find that estimating the atmosphere at 200 m scales can outperform traditional atmospheric correction, improving speed by one to two orders of magnitude with no measurable penalty to accuracy. We validate performance with an airborne field campaign, showing reflectance accuracies with RMSE of 1.1% or better compared to ground measurements of diverse targets. These errors are statistically consistent with retrieval uncertainty budgets. Local emulators can close the efficiency gap and make rigorous model inversion algorithms feasible for global missions such as SBG.

7.
Sci Total Environ ; 812: 151481, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34752877

RESUMEN

Seagrass meadows worldwide provide valuable ecosystem services but have experienced sharp declines in recent decades. This rapid loss has prompted numerous restoration efforts with variable levels of success, often depending on the suitability of the restoration sites. The selection of sites can be guided by simple habitat suitability models driven with environmental variables deemed critical to the successful growth of new transplants. Habitat suitability models typically consider the influence of bathymetry, sediment type, salinity, wave exposure, and water quality. However, they typically do not explicitly include benthic exposure to ultraviolet (UV) and commonly use depth as a coarse proxy for photosynthetically active radiation (PAR). Benthic exposure to UV and PAR are both key parameters for habitat suitability but can be challenging to determine, especially in coastal environments influenced by rivers and tides where they are extremely variable. Here, we demonstrate the development of a simple but effective model of spectrally-resolved benthic solar irradiance for a dynamic marsh-influenced mesotidal estuary in Massachusetts. In-situ measurements were used to develop and validate an empirical model predicting the UV-visible vertical diffuse attenuation coefficient spectra of downwelling irradiance, Kd(λ), from simple physical parameters about tides, river discharge and location. Spectral benthic solar irradiances (280-700 nm) were calculated hourly for 3 years (2017-2019) using modeled and validated cloud-corrected surface downwelling irradiances, estimates of water depth, and the modeled Kd(λ) spectra. The mapped irradiances were used to provide improved seagrass habitat suitability maps that will guide future restoration efforts in the estuary. We expect the approach presented here can be adapted to other dynamic coastal environments influenced by tides and rivers and/or applied to other light-dependent organisms and biogeochemical processes.


Asunto(s)
Ecosistema , Ríos , Estuarios , Salinidad , Calidad del Agua
8.
Environ Sci Technol ; 54(21): 14096-14106, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33095017

RESUMEN

The photobleaching of chromophoric dissolved organic matter (CDOM) is considered an important loss process for CDOM absorption in sunlit natural waters, where it can regulate the biota's exposure to sunlight, surface solar heating, and dissolved organic matter dynamics. Despite its importance, this sink remains poorly quantified, primarily because of the difficulty of determining photobleaching apparent quantum yields (AQYs) that capture the dual spectral dependency of this process and are applicable to polychromatic sunlight. Here, we present a simple method to determine a CDOM photobleaching AQY matrix (AQY-M) for natural water samples that does not require any a priori assumptions about the spectral dependency of photobleaching. It combines controlled irradiation experiments, a partial least-square regression, and an optimization procedure to produce AQY-Ms that are spectrally coherent and optimized for modeling accurate photobleaching rates in natural waters. Water temperature and the solar exposure history of CDOM had a major influence on the magnitude and spectral characteristics of the AQY-M. These factors should be considered when determining the AQY-M of samples and provide constraints when modeling photobleaching rates in natural waters. We expect that this effective method will provide future studies with a robust means to characterize and understand the variability of AQY-M in natural waters.


Asunto(s)
Luz Solar , Fotoblanqueo , Temperatura
9.
Sci Total Environ ; 688: 952-959, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31726577

RESUMEN

Recent climate change is causing most lakes on the Tibetan Plateau to grow at an unprecedented rate. Changes in the physical properties and water storage of the lakes are now relatively well documented. Yet the impacts on their water quality remain poorly understood. Turbidity is a well-established optical water-quality indicator related to suspended particulate matter concentration which can affect vertical light attenuation and ecosystem functioning. Here, we use remotely sensed data to assess the seasonal and long-term variations in turbidity in Siling Lake, one of the fastest growing lakes on the Tibetan Plateau, and to identify potential driving mechanisms of this change. The lake experiences two distinct peaks of turbidity during the year: one in August (warm season) caused by the seasonal influx of sediments from the Zagya Zangbo River, and one in December (cold season) caused by the wind-driven resuspension of sediments along the lakes' shorelines. The analysis further revealed a persistent increasing trend that doubled the average lake turbidity between 2000 and 2017. Evidence suggests this rise in turbidity results from a climate-driven increase in sediment supply from the Zagya Zangbo River, and from sediment resuspension associated with the erosion of shorelines recently submerged during the rapid expansion of the lake (paleoshorelines). Our results highlight the vulnerability of the Tibetan Lakes' water quality to climate change.

10.
ISME J ; 12(10): 2417-2432, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29899514

RESUMEN

Short timescale observations are valuable for understanding microbial ecological processes. We assessed dynamics in relative abundance and potential activities by sequencing the small sub-unit ribosomal RNA gene (rRNA gene) and rRNA molecules (rRNA) of Bacteria, Archaea, and Eukaryota once to twice daily between March 2014 and May 2014 from the surface ocean off Catalina Island, California. Typically Ostreococcus, Braarudosphaera, Teleaulax, and Synechococcus dominated phytoplankton sequences (including chloroplasts) while SAR11, Sulfitobacter, and Fluviicola dominated non-phytoplankton Bacteria and Archaea. We observed short-lived increases of diatoms, mostly Pseudo-nitzschia and Chaetoceros, with quickly responding Bacteria and Archaea including Flavobacteriaceae (Polaribacter & Formosa), Roseovarius, and Euryarchaeota (MGII), notably the exact amplicon sequence variants we observed responding similarly to another diatom bloom nearby, 3 years prior. We observed correlations representing known interactions among abundant phytoplankton rRNA sequences, demonstrating the biogeochemical and ecological relevance of such interactions: (1) The kleptochloroplastidic ciliate Mesodinium 18S rRNA gene sequences and a single Teleaulax taxon (via 16S rRNA gene sequences) were correlated (Spearman r = 0.83) yet uncorrelated to a Teleaulax 18S rRNA gene OTU, or any other taxon (consistent with a kleptochloroplastidic or karyokleptic relationship) and (2) the photosynthetic prymnesiophyte Braarudosphaera bigelowii and two strains of diazotrophic cyanobacterium UCYN-A were correlated and each taxon was also correlated to other taxa, including B. bigelowii to a verrucomicrobium and a dictyochophyte phytoplankter (all r > 0.8). We also report strong correlations (r > 0.7) between various ciliates, bacteria, and phytoplankton, suggesting interactions via currently unknown mechanisms. These data reiterate the utility of high-frequency time series to show rapid microbial reactions to stimuli, and provide new information about in situ dynamics of previously recognized and hypothesized interactions.


Asunto(s)
Archaea/genética , Bacterias/genética , Haptophyta/genética , Fitoplancton/genética , Plancton/clasificación , Plancton/fisiología , Diatomeas/genética , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Agua de Mar/microbiología
11.
Environ Sci Technol ; 50(2): 573-83, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26651265

RESUMEN

The San Francisco Bay-Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.


Asunto(s)
Bahías/análisis , Monitoreo del Ambiente/métodos , Estuarios , Tecnología de Sensores Remotos , Calidad del Agua , California , Espectrofotometría Ultravioleta
12.
Sci Rep ; 3: 1053, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23316278

RESUMEN

Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...