Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6994, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414621

RESUMEN

Loss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites. Some of these local IR mRNAs are prematurely terminated within the retained intron (PreT-IR). PreT-IR mRNAs undergo intronic polyadenylation, nuclear export, and localise to neurites in vitro and in vivo. We find these IR and PreT-IR mRNAs enriched in RNAseq datasets of tissue from patients with familial and sporadic ALS. This shared signature, between SFPQ-depleted neurons and ALS, functionally implicates SFPQ with the disease and suggests that neurite-centred perturbation of alternatively spliced isoforms drives the neurodegenerative process.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Intrones/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Axones/metabolismo , Neuronas Motoras/metabolismo
2.
Dev Cell ; 51(6): 775-786.e3, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31786070

RESUMEN

Dickkopf-1 (Dkk1) is a secreted Wnt antagonist with a well-established role in head induction during development. Numerous studies have emerged implicating Dkk1 in various malignancies and neurodegenerative diseases through an unknown mechanism. Using zebrafish gastrulation as a model for collective cell migration, we unveil such a mechanism, identifying a role for Dkk1 in control of cell connectivity and polarity in vivo, independent of its known function. We find that Dkk1 localizes to adhesion complexes at the plasma membrane and regions of concentrated actomyosin, suggesting a direct involvement in regulation of local cell adhesion. Our results show that Dkk1 represses cell polarization and integrity of cell-cell adhesion, independently of its impact on ß-catenin protein degradation. Concurrently, Dkk1 prevents nuclear localization of ß-catenin by restricting its distribution to a discrete submembrane pool. We propose that redistribution of cytosolic ß-catenin by Dkk1 concomitantly drives repression of cell adhesion and inhibits ß-catenin-dependent transcriptional output.


Asunto(s)
Comunicación Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/metabolismo , beta Catenina/metabolismo , Animales , Movimiento Celular/fisiología , Proteínas Wnt/metabolismo , Pez Cebra
3.
Development ; 146(22)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754007

RESUMEN

The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glándula Pineal/citología , Glándula Pineal/embriología , Transducción de Señal , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Embrión de Pollo , Ectodermo/citología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Cresta Neural/citología , Placa Neural/citología , Neuroglía/citología , Neuronas/citología , Sistemas Neurosecretores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Neuron ; 94(2): 322-336.e5, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28392072

RESUMEN

Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. VIDEO ABSTRACT.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Empalme del ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Corteza Motora/crecimiento & desarrollo , Factor de Empalme Asociado a PTB/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...