Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1232391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483386

RESUMEN

Chlamydia trachomatis is an obligate intracellular pathogen that actively promotes invasion of epithelial cells. A virulence-associated type III secretion system contributes to chlamydial entry and at least four effectors have been described that are deployed during this time. Two of these invasion-related effectors, the translocated membrane-associated effectors A and B (TmeA and TmeB), are encoded in a bi-cistronic operon. TmeA directly activates host N-WASP to stimulate Arp2/3-dependent actin polymerization. According to current working models, TmeA-mediated N-WASP activation contributes to invasion. TmeB has not been functionally characterized. Unlike a tmeA null strain, loss of tmeB does not impact invasion efficiency of C. trachomatis. Using strains deficient for multiple genes, we provide evidence that TmeA is dispensable for invasion in the absence of TmeB. Our data indicate that overabundance of TmeB interferes with invasion and that this activity requires active Arp2/3 complex. We further show that TmeB is capable of interfering with Arp2/3-mediated actin polymerization. In aggregate, these data point to opposing functions for TmeA and TmeB that manifest during the invasion process. These studies raise intriguing questions regarding the dynamic interplay between TmeA, TmeB, and branched actin polymerization during chlamydial entry.


Asunto(s)
Actinas , Chlamydia trachomatis , Humanos , Células HeLa , Chlamydia trachomatis/genética , Proteínas Bacterianas/genética , Polimerizacion
2.
Infect Immun ; 90(12): e0045322, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36350146

RESUMEN

The genus Chlamydia consists of diverse, obligate intracellular bacteria that infect various animals, including humans. Although chlamydial species share many aspects of the typical intracellular lifestyle, such as the biphasic developmental cycle and the preference for invasion of epithelial cells, each chlamydial strain also employs sophisticated species-specific strategies that contribute to an extraordinary diversity in organ and/or tissue tropism and disease manifestation. In order to discover and understand the mechanisms underlying how these pathogens infect particular hosts and cause specific diseases, it is imperative to develop a mutagenesis approach that would be applicable to every chlamydial species. We present functional evidence that the region between Chlamydia trachomatis and Chlamydia muridarum pgp6 and pgp7, containing four 22-bp tandem repeats that are present in all chlamydial endogenous plasmids, represents the plasmid origin of replication. Furthermore, by introducing species-specific ori regions into an engineered 5.45-kb pUC19-based plasmid, we generated vectors that can be successfully transformed into and propagated under selective pressure by C. trachomatis serovars L2 and D, as well as C. muridarum. Conversely, these vectors were rapidly lost upon removal of the selective antibiotic. This conditionally replicating system was used to generate a tarP deletion mutant by fluorescence-reported allelic exchange mutagenesis in both C. trachomatis serovar D and C. muridarum. The strains were analyzed using in vitro invasion and fitness assays. The virulence of the C. muridarum strains was then assessed in a murine infection model. Our approach represents a novel and efficient strategy for targeted genetic manipulation in Chlamydia beyond C. trachomatis L2. This advance will support comparative studies of species-specific infection biology and enable studies in a well-established murine model of chlamydial pathogenesis.


Asunto(s)
Infecciones por Chlamydia , Chlamydia muridarum , Humanos , Ratones , Animales , Chlamydia muridarum/genética , Técnicas de Inactivación de Genes , Eliminación de Gen , Chlamydia trachomatis/genética , Replicón , Modelos Animales , Infecciones por Chlamydia/microbiología
3.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468693

RESUMEN

Chlamydia trachomatis is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in Chlamydia entry. The advent of genetic techniques in C. trachomatis, such as creation of complete gene deletions via fluorescence-reported allelic exchange mutagenesis (FRAEM), is providing important tools to unravel the contributions of bacterial factors in these complex pathways. The type III secretion chaperone Slc1 directs delivery of at least four effectors during the invasion process. Two of these, TarP and TmeA, have been associated with manipulation of actin networks and are essential for normal levels of invasion. The functions of TarP are well established, whereas TmeA is less well characterized. We leverage chlamydial genetics and proximity labeling here to provide evidence that TmeA directly targets host N-WASP to promote Arp2/3-dependent actin polymerization. Our work also shows that TmeA and TarP influence separate, yet synergistic pathways to accomplish chlamydial entry. These data further support an appreciation that a pathogen, confined by a reductionist genome, retains the ability to commit considerable resources to accomplish bottle-neck steps during the infection process.IMPORTANCE The increasing genetic tractability of Chlamydia trachomatis is accelerating the ability to characterize the unique infection biology of this obligate intracellular parasite. These efforts are leading to a greater understanding of the molecular events associated with key virulence requirements. Manipulation of the host actin cytoskeleton plays a pivotal role throughout Chlamydia infection, yet a thorough understanding of the molecular mechanisms initiating and orchestrating actin rearrangements has lagged. Our work highlights the application of genetic manipulation to address open questions regarding chlamydial invasion, a process essential to survival. We provide definitive insight regarding the role of the type III secreted effector TmeA and how that activity relates to another prominent effector, TarP. In addition, our data implicate at least one source that contributes to the functional divergence of entry mechanisms among chlamydial species.


Asunto(s)
Actinas/genética , Proteínas Bacterianas/genética , Chlamydia trachomatis/genética , Citoesqueleto/metabolismo , Chaperonas Moleculares/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína 2 Relacionada con la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/metabolismo , Citoesqueleto/microbiología , Citoesqueleto/ultraestructura , Células Epiteliales/microbiología , Regulación de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Polimerizacion , Transducción de Señal , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
4.
Front Immunol ; 11: 1490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760406

RESUMEN

Dynamic interactions that govern the balance between host and pathogen determine the outcome of infection and are shaped by evolutionary pressures. Eukaryotic hosts have evolved elaborate and formidable defense mechanisms that provide the basis for innate and adaptive immunity. Proteins containing a membrane attack complex/Perforin (MACPF) domain represent an important class of immune effectors. These pore-forming proteins induce cell killing by targeting microbial or host membranes. Intracellular bacteria can be shielded from MACPF-mediated killing, and Chlamydia spp. represent a successful paradigm of obligate intracellular parasitism. Ancestors of present-day Chlamydia likely originated at evolutionary times that correlated with or preceded many host defense pathways. We discuss the current knowledge regarding how chlamydiae interact with the MACPF proteins Complement C9, Perforin-1, and Perforin-2. Current evidence indicates a degree of resistance by Chlamydia to MACPF effector mechanisms. In fact, chlamydiae have acquired and adapted their own MACPF-domain protein to facilitate infection.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia/fisiología , Complemento C9/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Perforina/metabolismo , Animales , Evolución Biológica , Complemento C9/genética , Complejo de Ataque a Membrana del Sistema Complemento/genética , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Perforina/genética
5.
Infect Immun ; 88(5)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32152196

RESUMEN

The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia's ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidad , Mutagénesis/genética , Actinas/genética , Alelos , Animales , Proteínas Bacterianas/genética , Línea Celular Tumoral , Fluorescencia , Eliminación de Gen , Células HeLa , Humanos , Ratones , Ratones Endogámicos C3H , Fosfoproteínas/genética , Virulencia/genética
6.
J Vis Exp ; (155)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32065159

RESUMEN

Chlamydia trachomatis is an obligate intracellular pathogen that has been historically difficult to genetically manipulate. Definitive progress in elucidating the mechanisms that C. trachomatis use to create and maintain a privileged intracellular niche has been limited due to a lack of genetic tools. Fortunately, there have recently been several new advances in genetic manipulation techniques. Among these is the development of fluorescence-reported allelic exchange mutagenesis (FRAEM). This method allows targeted gene deletion coupled with insertion of a selection cassette encoding antibiotic resistance and green fluorescent protein (GFP). Reliance on this strategy can be complicated when targeting genes within polycistronic operons due to the potential of polar effects on downstream genes. Floxed cassette allelic exchange mutagenesis (FLAEM), the protocol for which is described here, was developed to alleviate cassette-induced polar effects. FLAEM utilizes Cre-loxP genome editing to remove the selection cassette after targeted deletion by allelic exchange. The resulting strains contain markerless gene deletions of one or more coding sequences. This technique facilitates direct assessment of gene function and expands the repertoire of tools for genetic manipulation in C. trachomatis.


Asunto(s)
Alelos , Chlamydia trachomatis/genética , Eliminación de Gen , Mutagénesis Insercional/genética , Mutagénesis/genética , Secuencia de Bases , ADN Bacteriano/genética , Genoma Bacteriano , Proteínas Fluorescentes Verdes/genética , Integrasas/metabolismo , Transformación Genética
7.
Methods Mol Biol ; 2042: 151-164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31385275

RESUMEN

Progress in understanding molecular mechanisms contributing to chlamydial pathogenesis has been greatly facilitated by recent advances in genetic manipulation of C. trachomatis. Valuable approaches such as random, chemically induced mutagenesis or targeted, insertion-based gene disruption have led to significant discoveries. We describe herein a technique for generating definitive null strains via complete deletion of chromosomal genes in C. trachomatis. Fluorescence-reported allelic exchange mutagenesis (FRAEM), using the suicide vector pSUmC, enables targeted deletion of desired chromosomal DNA. The protocol provided here describes steps required to produce transformation competent chlamydiae, generate a specific allelic exchange plasmid construct, carry out mutagenesis, and isolate clonal populations of resulting mutant strains.


Asunto(s)
Chlamydia trachomatis/genética , Eliminación de Gen , Marcación de Gen/métodos , Mutagénesis , Alelos , Infecciones por Chlamydia/microbiología , Cromosomas Bacterianos , Humanos , Transformación Genética
8.
Microbes Infect ; 20(7-8): 445-450, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29409975

RESUMEN

The intonation "The king is dead, long live the king" aptly describes the state of Chlamydia research. Genetic-based approaches are rapidly replacing correlative strategies to provide new insights. We describe how current transformation technologies are enhancing progress in understanding Chlamydia infection biology and present key opportunities for further development.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia/fisiología , Animales , Proteínas Bacterianas/genética , Chlamydia/genética , Chlamydia/patogenicidad , Infecciones por Chlamydia/fisiopatología , Clonación Molecular , Competencia de la Transformación por ADN , Técnicas de Transferencia de Gen , Humanos , Mutagénesis , Factores de Virulencia/genética
9.
Curr Protoc Microbiol ; 45: 11A.3.1-11A.3.15, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28510361

RESUMEN

Gene inactivation is essential for forward and reverse genetic approaches to establish protein function. Techniques such as insertion or chemical mutagenesis have been developed to mutagenize chlamydiae via targeted or random mutagenesis, respectively. Both of these approaches require transformation of chlamydiae to either introduce insertion elements or complement mutants. We have recently developed a targeted mutagenesis strategy, fluorescence-reported allelic exchange mutagenesis (FRAEM), to delete Chlamydia trachomatis L2 genes. This approach overcomes several barriers for genetically manipulating intracellular bacteria. Perhaps most significantly, FRAEM employs fluorescence reporting to indicate successful transformation and subsequent recombination events. Three protocols are provided that detail methods to construct gene-specific suicide vectors, transform C. trachomatis L2 to select for recombinants, and isolate clonal populations via limiting dilution. In aggregate, these protocols will allow investigators to engineer C. trachomatis L2 strains carrying complete deletions of desired gene(s). © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Chlamydia trachomatis/genética , Técnicas de Inactivación de Genes/métodos , Transformación Bacteriana
10.
mBio ; 7(1): e01817-15, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26787828

RESUMEN

UNLABELLED: Although progress in Chlamydia genetics has been rapid, genomic modification has previously been limited to point mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange. Herein, we present a novel suicide vector dependent on inducible expression of a chlamydial gene that renders Chlamydia trachomatis fully genetically tractable and permits rapid reverse genetics by fluorescence-reported allelic exchange mutagenesis (FRAEM). We describe the first available system of targeting chlamydial genes for deletion or allelic exchange as well as curing plasmids from C. trachomatis serovar L2. Furthermore, this approach permits the monitoring of mutagenesis by fluorescence microscopy without disturbing bacterial growth, a significant asset when manipulating obligate intracellular organisms. As proof of principle, trpA was successfully deleted and replaced with a sequence encoding both green fluorescent protein (GFP) and ß-lactamase. The trpA-deficient strain was unable to grow in indole-containing medium, and this phenotype was reversed by complementation with trpA expressed in trans. To assess reproducibility at alternate sites, FRAEM was repeated for genes encoding type III secretion effectors CTL0063, CTL0064, and CTL0065. In all four cases, stable mutants were recovered one passage after the observation of transformants, and allelic exchange was limited to the specific target gene, as confirmed by whole-genome sequencing. Deleted sequences were not detected by quantitative real-time PCR (qPCR) from isogenic mutant populations. We demonstrate that utilization of the chlamydial suicide vector with FRAEM renders C. trachomatis highly amenable to versatile and efficient genetic manipulation. IMPORTANCE: The obligate intracellular nature of a variety of infectious bacteria presents a significant obstacle to the development of molecular genetic tools for dissecting pathogenicity. Although progress in chlamydial genetics has been rapid, genomic modification has previously been limited to point mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange. Here, we present a novel suicide vector dependent on inducible expression of a chlamydial gene that renders Chlamydia trachomatis fully genetically tractable and permits rapid reverse genetics by fluorescence-reported allelic exchange mutagenesis (FRAEM). We describe the first available system of targeting chlamydial genes for deletion or allelic exchange as well as curing plasmids from C. trachomatis L2. Furthermore, this approach permits monitoring of mutagenesis by fluorescence microscopy without disturbing bacterial growth, a significant asset when manipulating obligate intracellular organisms.


Asunto(s)
Chlamydia trachomatis/genética , Fluorescencia , Eliminación de Gen , Técnicas de Inactivación de Genes/métodos , Genes Reporteros , Genética Microbiana/métodos , Cromosomas Bacterianos , Microscopía Fluorescente , Plásmidos
11.
Microbes Infect ; 18(2): 84-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26515030

RESUMEN

It has been appreciated for almost 20 years that members of the Chlamydiales possess a virulence-associated type III secretion mechanism. Given the obligate intracellular nature of these bacteria, defining exactly how type III secretion functions to promote pathogenesis has been challenging. We present a working model herein that is based on current evidence.


Asunto(s)
Chlamydia/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Chlamydia/química , Chlamydia/metabolismo , Modelos Biológicos , Modelos Moleculares , Sistemas de Secreción Tipo III/química
12.
PLoS One ; 10(8): e0135295, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26258949

RESUMEN

Chlamydia spp. utilize multiple secretion systems, including the type III secretion system (T3SS), to deploy host-interactive effector proteins into infected host cells. Elucidation of secreted proteins has traditionally required ectopic expression in a surrogate T3SS followed by immunolocalization of endogenous candidate effectors to confirm secretion by chlamydiae. The ability to transform Chlamydia and achieve stable expression of recombinant gene products has enabled a more direct assessment of secretion. We adapted TEM-1 ß-lactamase as a reporter system for assessment of chlamydial protein secretion. We provide evidence that this system facilitates visualization of secretion in the context of infection. Specifically, our findings provide definitive evidence that C. trachomatis CT695 is secreted during infection. Follow-up indirect immunofluorescence studies confirmed CT695 secretion and indicate that this effector can be secreted at multiple points during the chlamydial developmental cycle. Our results indicate that the BlaM-fusion reporter assay will allow efficacious identification of novel secreted proteins. Moreover, this approach can easily be adapted to enable more sophisticated studies of the secretion process in Chlamydia.


Asunto(s)
Proteínas Bacterianas/genética , Chlamydia trachomatis/genética , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo III/genética , beta-Lactamasas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidad , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Neisseria meningitidis/química , Neisseria meningitidis/genética , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transformación Bacteriana , Sistemas de Secreción Tipo III/metabolismo , beta-Lactamasas/metabolismo , Proteína Fluorescente Roja
13.
J Bacteriol ; 195(18): 4221-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23852872

RESUMEN

Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.


Asunto(s)
Proteínas Bacterianas/genética , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/genética , Hidrazinas/farmacología , Mutación , Protoporfirinógeno-Oxidasa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Chlamydia trachomatis/enzimología , Chlamydia trachomatis/patogenicidad , Farmacorresistencia Bacteriana , Células HeLa , Hemo/metabolismo , Humanos , Hierro/metabolismo , Hierro/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/metabolismo
14.
PLoS One ; 8(7): e68754, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874749

RESUMEN

Here we show that cells lacking the heme-regulated inhibitor (HRI) are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S) system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria. For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase) are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.


Asunto(s)
Bacterias/patogenicidad , Interacciones Huésped-Patógeno , Factores de Virulencia/fisiología , eIF-2 Quinasa/fisiología , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Células Cultivadas , Chlamydia trachomatis/patogenicidad , Resistencia a la Enfermedad/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Listeria monocytogenes/patogenicidad , Masculino , Ratones , Yersinia pseudotuberculosis/patogenicidad
15.
PLoS One ; 8(5): e63732, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23700432

RESUMEN

Pannexin 1 (Panx1) is a plasma membrane channel glycoprotein that plays a role in innate immune response through association with the inflammasome complex. Probenecid, a classic pharmacological agent for gout, has also been used historically in combination therapy with antibiotics to prevent cellular drug efflux and has been reported to inhibit Panx1. As the inflammasome has been implicated in the progression of Chlamydia infections, and with chlamydial infections at record levels in the US, we therefore investigated whether probenecid would have a direct effect on Chlamydia trachomatis development through inhibition of Panx1. We found chlamydial development to be inhibited in a dose-dependent, yet reversible manner in the presence of probenecid. Drug treatment induced an aberrant chlamydial morphology consistent with persistent bodies. Although Panx1 was shown to localize to the chlamydial inclusion, no difference was seen in chlamydial development during infection of cells derived from wild-type and Panx1 knockout mice. Therefore, probenecid may inhibit C. trachomatis growth by an as yet unresolved mechanism.


Asunto(s)
Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/fisiología , Conexinas/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Antibacterianos/farmacología , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/inmunología , Conexinas/antagonistas & inhibidores , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Ratones , Ratones Noqueados , Pruebas de Sensibilidad Microbiana , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Probenecid/farmacología , Transporte de Proteínas
16.
J Immunol ; 190(4): 1695-701, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23303668

RESUMEN

Type I IFNs are induced during microbial infections and have well-characterized antiviral activities. TRAF3 is a signaling molecule crucial for type I IFN production and, therefore, represents a potential target for disarming immune responses. Chlamydia pneumoniae is a human pathogen that primarily infects respiratory epithelial cells; the onset of symptoms takes several weeks, and the course of infection is protracted. C. pneumoniae has also been associated with a variety of chronic inflammatory conditions. Thus, typical C. pneumoniae infections of humans are consistent with an impairment in inflammatory responses to the microorganism. We demonstrate that infection of epithelial cells with C. pneumoniae does not lead to IFN-ß production. Instead, infected cells are prevented from activating IFN regulatory factor 3. This effect is mediated by C. pneumoniae-dependent degradation of TRAF3, which is independent of a functional proteasome. Hence, it is likely that C. pneumoniae expresses a unique protease targeting TRAF3-dependent immune effector mechanisms.


Asunto(s)
Chlamydophila pneumoniae/inmunología , Regulación hacia Abajo/inmunología , Inmunidad Innata , Mucosa Respiratoria/inmunología , Factor 3 Asociado a Receptor de TNF/metabolismo , Transporte Activo de Núcleo Celular/inmunología , Línea Celular Tumoral , Infecciones por Chlamydophila/inmunología , Infecciones por Chlamydophila/microbiología , Infecciones por Chlamydophila/patología , Chlamydophila pneumoniae/patogenicidad , Regulación hacia Abajo/genética , Marcación de Gen , Células HeLa , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/biosíntesis , Interferón Tipo I/genética , Fosforilación/inmunología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/patología , Factor 3 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 3 Asociado a Receptor de TNF/genética
17.
J Biol Chem ; 287(34): 28738-44, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22761422

RESUMEN

In eukaryotic cells, there are two well characterized pathways that regulate translation initiation in response to stress, and each have been shown to be targeted by various viruses. We recently showed in a yeast-based model that the bacterial virulence factor YopJ disrupts one of these pathways, which is centered on the α-subunit of the translation factor eIF2. Here, we show in mammalian cells that induction of the eIF2 signaling pathway occurs following infection with bacterial pathogens and that, consistent with our yeast-based findings, YopJ reduces eIF2 signaling in response to endoplasmic reticulum stress, heavy metal toxicity, dsRNA, and bacterial infection. We demonstrate that the well documented activities of YopJ, inhibition of NF-κB activation and proinflammatory cytokine expression, are both dependent on an intact eIF2 signaling pathway. Unexpectedly, we found that cells with defective eIF2 signaling were more susceptible to bacterial invasion. This was true for pathogenic Yersinia, a facultative intracellular pathogen, as well as for the intracellular pathogens Listeria monocytogenes and Chlamydia trachomatis. Collectively, our data indicate that the highly conserved eIF2 signaling pathway, which is vitally important for antiviral responses, plays a variety of heretofore unrecognized roles in antibacterial responses.


Asunto(s)
Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Citocinas/biosíntesis , Factor 2 Eucariótico de Iniciación/metabolismo , Mediadores de Inflamación/metabolismo , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Transducción de Señal , Yersiniosis/metabolismo , Yersinia/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Línea Celular , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/genética , Chlamydia trachomatis/inmunología , Citocinas/genética , Citocinas/inmunología , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/inmunología , Mediadores de Inflamación/inmunología , Listeria monocytogenes/genética , Listeria monocytogenes/inmunología , Listeriosis/genética , Listeriosis/inmunología , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Yersinia/genética , Yersinia/inmunología , Yersiniosis/genética , Yersiniosis/inmunología
18.
J Biol Chem ; 287(33): 28078-86, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22711538

RESUMEN

The Chlamydia trachomatis type three-secreted effector protein CT694 is expressed during late-cycle development yet is secreted by infectious particles during the invasion process. We have previously described the presence of at least two functional domains within CT694. CT694 was found to interact with the human protein Ahnak through a C-terminal domain and affect formation of host-cell actin stress fibers. Immunolocalization analyses of ectopically expressed pEGFP-CT694 also revealed plasma membrane localization for CT694 that was independent of Ahnak binding. Here we provide evidence that CT694 contains multiple functional domains. Plasma membrane localization and CT694-induced alterations in host cell morphology are dependent on an N-terminal domain. We demonstrate that membrane association of CT694 is dependent on a domain resembling a membrane localization domain (MLD) found in anti-host proteins from Yersinia, Pseudomonas, and Salmonella spp. This domain is necessary and sufficient for localization and morphology changes but is not required for Ahnak binding. Further, the CT694 MLD is able to complement ExoS ΔMLD when ectopically expressed. Taken together, our data indicate that CT694 is a multidomain protein with the potential to modulate multiple host cell processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fibras de Estrés/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/genética , Infecciones por Chlamydia/genética , Chlamydia trachomatis/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Estructura Terciaria de Proteína , Pseudomonas/genética , Pseudomonas/metabolismo , Salmonella/genética , Salmonella/metabolismo , Fibras de Estrés/genética , Yersinia/genética , Yersinia/metabolismo
19.
Front Microbiol ; 2: 99, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21747803
20.
J Bacteriol ; 193(14): 3490-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571996

RESUMEN

The Chlamydia pneumoniae CopN protein is a member of the YopN/TyeA/InvE/MxiC family of secreted proteins that function to regulate the secretion of type III secretion system (T3SS) translocator and effector proteins. In this study, the Scc1 (CP0432) and Scc4 (CP0033) proteins of C. pneumoniae AR-39 were demonstrated to function together as a type III secretion chaperone that binds to an N-terminal region of CopN. The Scc1/Scc4 chaperone promoted the efficient secretion of CopN via a heterologous T3SS, whereas, the Scc3 chaperone, which binds to a C-terminal region of CopN, reduced CopN secretion.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydophila pneumoniae/metabolismo , Chaperonas Moleculares/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chlamydophila pneumoniae/química , Chlamydophila pneumoniae/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...