Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39337297

RESUMEN

We developed a protein to rapidly and accurately diagnose Chagas disease, a life-threatening illness identified by the WHO as a critical worldwide public health risk. Limitations in present day serological tests are complicating the current health situation and contributing to most infected persons being unaware of their condition and therefore untreated. To improve diagnostic testing, we developed an immunological mimic of the etiological agent, Trypanosoma cruzi, by combining ten pathogen-specific epitopes within the beta-barrel protein structure of Thermal Green Protein. The resulting multi-epitope protein, DxCruziV3, displayed high specificity and sensitivity as the antibody capture reagent in an ELISA platform with an analytical sensitivity that exceeds WHO recommendations. Within an immunochromatographic platform, DxCruziV3 showed excellent performance for the point of application diagnosis in a region endemic for multiple diseases, the municipality of Barcelos in the state of Amazonas, Brazil. In total, 167 individuals were rapidly tested using whole blood from a finger stick. As recommended by the Brazilian Ministry of Health, venous blood samples were laboratory tested by conventional assays for comparison. Test results suggest utilizing DxCruziV3 in different assay platforms can confidently diagnose chronic infections by T. cruzi. Rapid and more accurate results will benefit everyone but will have the most noticeable impact in resource-limited rural areas where the disease is endemic.


Asunto(s)
Enfermedad de Chagas , Ensayo de Inmunoadsorción Enzimática , Epítopos , Pruebas Serológicas , Trypanosoma cruzi , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/sangre , Enfermedad de Chagas/inmunología , Humanos , Ensayo de Inmunoadsorción Enzimática/métodos , Trypanosoma cruzi/inmunología , Pruebas Serológicas/métodos , Epítopos/inmunología , Enfermedad Crónica , Masculino , Sensibilidad y Especificidad , Femenino , Adulto , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Persona de Mediana Edad , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/sangre , Brasil/epidemiología
2.
BMC Genomics ; 21(1): 463, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631258

RESUMEN

BACKGROUND: We performed an in-depth analysis of the ABC gene family in Aedes aegypti (Diptera: Culicidae), which is an important vector species of arthropod-borne viral infections such as chikungunya, dengue, and Zika. Despite its importance, previous studies of the Arthropod ABC family have not focused on this species. Reports of insecticide resistance among pests and vectors indicate that some of these ATP-dependent efflux pumps are involved in compound traffic and multidrug resistance phenotypes. RESULTS: We identified 53 classic complete ABC proteins annotated in the A. aegypti genome. A phylogenetic analysis of Aedes aegypti ABC proteins was carried out to assign the novel proteins to the ABC subfamilies. We also determined 9 full-length sequences of DNA repair (MutS, RAD50) and structural maintenance of chromosome (SMC) proteins that contain the ABC signature. CONCLUSIONS: After inclusion of the putative ABC proteins into the evolutionary tree of the gene family, we classified A. aegypti ABC proteins into the established subfamilies (A to H), but the phylogenetic positioning of MutS, RAD50 and SMC proteins among ABC subfamilies-as well as the highly supported grouping of RAD50 and SMC-prompted us to name a new J subfamily of A. aegypti ABC proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/clasificación , Aedes/genética , Proteínas de Insectos/clasificación , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas de Insectos/genética , Familia de Multigenes , Filogenia
3.
PLoS Negl Trop Dis ; 13(12): e0007915, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841521

RESUMEN

BACKGROUND: Orthohantavirus infection is a neglected global health problem affecting approximately 200,000 people/year, spread by rodent hosts and associated to fatal human diseases, such as hemorrhagic fever with renal syndrome (HFRS) and orthohantavirus cardiopulmonary syndrome (HCPS). Circulation of HFRS-associated orthohantaviruses, such as Seoul, Gou, Amur, Dobrava and Hantaan, are supposed to be restricted to Eurasian countries even though their hosts can be a worldwide distribution. Few confirmed HFRS orthohantavirus infections in humans have been reported in American countries, but due to lower medical awareness of the symptoms of this zoonosis, it could be associated to viral underreporting or to misdiagnosis with several tropical hemorrhagic diseases. Serological evidence of orthohantavirus infections, using enzyme-linked immunosorbent assay for the presence of immunoglobulin M and G against recombinant nucleoprotein protein, remains as an essential assay for viral surveillance. In this study, we aimed to identify in silico immunogenic B-cell linear epitopes present on orthohantavirus nucleoprotein that are exclusive to HFRS-related species. METHODOLOGY/PRINCIPAL FINDINGS: In silico analysis were performed using Seoul orthohantavirus nucleoprotein (SHNP) sequence as a model. Linear B-cell-epitopes on SHNP and its immunogenicity were predicted by BepiPred-2.0 and Vaxijen algorithms, respectively. The conservancy of predicted epitopes was compared with the most clinically relevant HFRS or HCPS-associated orthohantavirus, aiming to identify specific sequences from HFRS-orthohantavirus. Peptide validation was carried out by ELISA using Balb/c mice sera immunized with purified recombinant rSHNP. Peptides cross-reactivity against HCPS orthohantavirus were evaluated using immunized sera from mice injected with recombinant Juquitiba orthohantavirus nucleoprotein (rJHNP). CONCLUSION/SIGNIFICANCE: In silico analysis revealed nine potential immunogenic linear B-cell epitopes from SHNP; among them, SHNP(G72-D110) and SHNP(P251-D264) showed a high degree of sequence conservation among HFRS-related orthohantavirus and were experimentally validated against rSHNP-IMS and negatively validated against rJHNP-IMS. Taken together, we identified and validated two potential antigenic B-cell epitopes on SHNP, which were conserved among HFRS-associated orthohantavirus and could be applied to the development of novel immunodiagnostic tools for orthohantavirus surveillance.


Asunto(s)
Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Virus Seoul/inmunología , Animales , Antígenos Virales/administración & dosificación , Antígenos Virales/inmunología , Biología Computacional , Epítopos de Linfocito B/genética , Ratones Endogámicos BALB C , Virus Seoul/genética
4.
Sci Rep ; 9(1): 2829, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808916

RESUMEN

The dengue virus 2 capsid protein (DENV2C) plays a primary structural role in the protection of the viral genome and is crucial for nucleocapsid assembly. In this study, we generated single mutants of DENV2C at L50 and L54 residues of the α2 helix, which was shown to interfere with the integration of the capsid into lipid droplets, and at residues L81 and I88 located in the α4 helix, which was shown to affect viral assembly. We demonstrated that the oligomeric states of DENV2C and its mutants exist primarily in the dimeric state in solution. All single-point mutations introduced in DENV2C promoted reduction in protein stability, an effect that was more pronounced for the L81N and I88N mutants, but not protein unfolding. All the single-point mutations affected the ability of DEN2C to interact with RNA. We concluded that mutations in the α2-α2' and α4-α4' dimer interfaces of DENV2C affect the structural stability of the protein and impair RNA-capsid interaction. These effects were more pronounced for mutations at the L81 and I88 residues in the α4 helix. These results indicate the importance of the α4-α4' dimer interface, which could be studied as a potential target for drug design in the future.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Virus del Dengue/metabolismo , Mutación , Multimerización de Proteína , ARN Viral/metabolismo , Animales , Proteínas de la Cápside/genética , Virus del Dengue/genética , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
5.
Insect Biochem Mol Biol ; 69: 61-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25910679

RESUMEN

Chitin is an essential component of the peritrophic matrix (PM), which is a structure that lines the insect's gut and protects against mechanical damage and pathogens. Rhodnius prolixus (Hemiptera: Reduviidae) does not have a PM, but it has an analogous structure, the perimicrovillar membrane (PMM); chitin has not been described in this structure. Here, we show that chitin is present in the R. prolixus midgut using several techniques. The FTIR spectrum of the KOH-resistant putative chitin-material extracted from the midgut bolus showed peaks characteristic of the chitin molecule at 3500, 1675 and 1085 cm(1). Both the midgut bolus material and the standard chitin NMR spectra showed a peak at 1.88 ppm, which is certainly due to methyl protons in the acetamide a group. The percentages of radioactive N-acetylglucosamine (CPM) incorporated were 2 and 4% for the entire intestine and bolus, respectively. The KOH-resistant putative chitin-material was also extracted and purified from the N-acetylglucosamine radioactive bolus, and the radioactivity was estimated through liquid scintillation. The intestinal CHS cDNA translated sequence was the same as previously described for the R. prolixus cuticle and ovaries. Phenotypic alterations were observed in the midgut of females with a silenced CHS gene after a blood meal, such as retarded blood meal digestion; the presence of fresh blood that remained red nine days after the blood meal; and reduced trachea and hemozoin content compared with the control. Wheat germ agglutinin (a specific probe that detects chitin) labeling proximal to the intestine (crop and midgut) was much lower in females with a silenced CHS gene, especially in the midgut region, where almost no fluorescence signal was detected compared with the control groups. Midguts from females with a CHS gene silenced by dsRNA-CHS and control midguts pre-treated with chitinase showed that the chitin-derived fluorescence signal decreased in the region around the epithelium, the region facing the midgut and projections towards the intestinal lumen when evaluated microscopically. The relative reduction in CHS transcripts by approximately 80% using an RNAi assay supports the phenotypical alterations in the midgut observed using fluorescence microscopy assays. These data show that chitin is present in the R. prolixus midgut epithelium and in its surface projections facing the lumen. The CHS gene expression and the presence of chitin in the R. prolixus midgut may suggest a target for controlling Chagas disease vectors and addressing this public health problem.


Asunto(s)
Quitina/análisis , Rhodnius/química , Animales , Sistema Digestivo/química , Femenino , Conejos
6.
Insect Biochem Mol Biol ; 51: 110-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24398146

RESUMEN

In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors.


Asunto(s)
Quitina Sintasa/genética , Muda/genética , Oogénesis/genética , Oviposición/genética , Rhodnius/genética , Rhodnius/metabolismo , Animales , Enfermedad de Chagas , Vectores de Enfermedades , Femenino , Muda/fisiología , Oogénesis/fisiología , Oviposición/fisiología , Interferencia de ARN , ARN Bicatenario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA