Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurochem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934224

RESUMEN

Gut dysbiosis is linked to metabolic and neurodegenerative diseases and comprises a plausible link between high-fat diet (HFD) and brain dysfunction. Here we show that gut microbiota modulation by either antibiotic treatment for 5 weeks or a brief 3-day fecal microbiota transplantation (FMT) regimen from low-fat (control) diet-fed mice decreased weight gain, adipose tissue hypertrophy, and glucose intolerance induced by HFD in C57BL/6 male mice. Notably, gut microbiota modulation by FMT completely reversed impaired recognition memory induced by HFD, whereas modulation by antibiotics had less pronounced effect. Improvement in recognition memory by FMT was accompanied by decreased HFD-induced astrogliosis in the hippocampal cornu ammonis region. Gut microbiome composition analysis indicated that HFD diminished microbiota diversity compared to control diet, whereas FMT partially restored the phyla diversity. Our findings reinforce the role of the gut microbiota on HFD-induced cognitive impairment and suggest that modulating the gut microbiota may be an effective strategy to prevent metabolic and cognitive dysfunction associated with unfavorable dietary patterns.

2.
Br J Pharmacol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936407

RESUMEN

BACKGROUND AND PURPOSE: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aß oligomer (AßO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AßO. KEY RESULTS: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AßO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AßO-infused mice. CONCLUSION AND IMPLICATIONS: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.

3.
Mol Psychiatry ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678084

RESUMEN

It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19. The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031). Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19. Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.

4.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460804

RESUMEN

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Animales , Ratones , Virus Zika/genética , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Transducción de Señal , Adenosina Trifosfato
5.
Mol Neurobiol ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996731

RESUMEN

Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.

6.
Front Pharmacol ; 14: 1179723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153798

RESUMEN

Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.

7.
Front Immunol ; 14: 1158460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114062

RESUMEN

Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Microglía/metabolismo , COVID-19/metabolismo , SARS-CoV-2
8.
J Virol ; 95(22): e0090421, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34468171

RESUMEN

Zika virus (ZIKV) infection became a worldwide concern due to its correlation with the development of microcephaly and other neurological disorders. ZIKV neurotropism is well characterized, but the role of peripheral viral amplification to brain infection remains unknown. Here, we found that ZIKV replicates in human primary skeletal muscle myoblasts, impairing its differentiation into myotubes but not interfering with the integrity of the already-formed muscle fibers. Using mouse models, we showed ZIKV tropism to muscle tissue either during embryogenesis after maternal transmission or when infection occurred after birth. Interestingly, ZIKV replication in the mouse skeletal muscle started immediately after ZIKV inoculation, preceding viral RNA detection in the brain and causing no disruption to the integrity of the blood brain barrier, and remained active for more than 2 weeks, whereas replication in the spleen and liver were not sustained over time. In addition, ZIKV infection of the skeletal muscle induces necrotic lesions, inflammation, and fiber atrophy. We also found a reduction in the expression of regulatory myogenic factors that are essential for muscle repair after injury. Taken together, our results indicate that the skeletal muscle is an early site of viral amplification and lesion that may result in late consequences in muscle development after ZIKV infection. IMPORTANCE Zika Virus (ZIKV) neurotropism and its deleterious effects on central nervous system have been well characterized. However, investigations of the initial replication sites for the establishment of infection and viral spread to neural tissues remain underexplored. A complete description of the range of ZIKV-induced lesions and others factors that can influence the severity of the disease is necessary to prevent ZIKV's deleterious effects. ZIKV has been shown to access the central nervous system without significantly affecting blood-brain barrier permeability. Here, we demonstrated that skeletal muscle is an earlier site of ZIKV replication, contributing to the increase of peripheral ZIKV load. ZIKV replication in muscle promotes necrotic lesions and inflammation and also impairs myogenesis. Overall, our findings showed that skeletal muscle is involved in pathogenesis and opens new fields in the investigation of the long-term consequences of early infection.


Asunto(s)
Fibras Musculares Esqueléticas/virología , Infección por el Virus Zika/virología , Virus Zika/fisiología , Aedes , Animales , Animales Recién Nacidos , Línea Celular , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/citología , Mioblastos , Replicación Viral
9.
Nutr Neurosci ; 24(12): 978-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31910791

RESUMEN

Although the benefits of moderate intake of red wine in decreasing incidence of cardiovascular diseases associated to hypercholesterolemia are well recognized, there are still widespread misconceptions about its effects on the hypercholesterolemia-related cognitive impairments. Herein we investigated the putative benefits of regular red wine consumption on cognitive performance of low-density lipoprotein receptor knockout (LDLr-/-) mice, an animal model of familial hypercholesterolemia, which display cognitive impairments since early ages. The red wine was diluted into the drinking water to a final concentration of 6% ethanol and was available for 60 days for LDLr-/- mice fed a normal or high-cholesterol diet. The results indicated that moderate red wine consumption did not alter locomotor parameters and liver toxicity. Across multiple cognitive tasks evaluating spatial learning/reference memory and recognition/identification memory, hypercholesterolemic mice drinking red wine performed significantly better than water group, regardless of diet. Additionally, immunofluorescence assays indicated a reduction of astrocyte activation and lectin stain in the hippocampus of LDLr-/- mice under consumption of red wine. These findings demonstrate that the moderate consumption of red wine attenuates short- and long-term memory decline associated with hypercholesterolemia in mice and suggest that it could be through a neurovascular action.


Asunto(s)
Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipercolesterolemia/complicaciones , Receptores de LDL/fisiología , Vino , Animales , Conducta Animal , Encéfalo/irrigación sanguínea , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatología , Hepatopatías Alcohólicas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Receptores de LDL/deficiencia , Receptores de LDL/genética
10.
Nutr Neurosci ; 23(6): 444-454, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30198423

RESUMEN

Alzheimer disease (AD) is a progressive neurodegenerative brain disorder that causes significant disruption in normal brain functioning, representing the most common cause of dementia in the elderly. The main hallmark of AD is the presence of amyloid plaques in the brain formed by the deposition of insoluble amyloid protein (Aß) outside of neurons. Despite intensive investigation of the mechanisms of AD pathogenesis during the past three decades, little has been achieved in terms of effective treatments or ways to prevent the disease. Paullinia cupana, known as guarana, is a plant endemic to the Amazon region in Brazil with several beneficial effects reported, including delayed aging. In this study, we investigated the effects of chronic consumption of guarana ethanolic extract (GEE) on Aß toxicity using a C. elegans model of AD. We analyzed the behavioral phenotype, oxidative damage and Aß protein expression in worms treated with GEE. In addition, we investigated the possible role of the heat shock response on the beneficial effects induced by GEE. Overall, our data demonstrate that chronic GEE treatment decreased the formation of Aß aggregates in C. elegans, preventing the behavioral deficits and the oxidative damage inducible by Aß expression, due to activation of the heat shock protein (HSP) response. This finding provides a new alternative against amyloidogenic neurodegenerative diseases and other diseases caused by protein accumulation during aging.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Proteínas de Choque Térmico/metabolismo , Paullinia , Fragmentos de Péptidos/toxicidad , Extractos Vegetales/administración & dosificación , Sustancias Protectoras/administración & dosificación , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos
11.
Front Microbiol ; 10: 2246, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632368

RESUMEN

Mayaro virus (MAYV) is an emergent arbovirus first described in forest regions of the American continent, with recent and increasing notification of urban area circulation. Similar to Chikungunya (CHIKV) and other arthritogenic Alphavirus, MAYV-induced disease shows a high prevalence of persistent arthralgia, and myalgia. Despite this, knowledge regarding pathogenesis and characteristics of host immune response of MAYV infections are still limited. Here, using different ages of wild-type (WT), adult Type I Interferon receptor deficient (IFNAR-/-), and adult recombination activation gene-1 deficient (RAG-/-) mice, we have investigated the dependence of age, innate and adaptive immunity for the control of MAYV replication, tissue damage, and inflammation in mice. We have found that MAYV induces clinical signal and replicates in young WT mice, which gain the ability to restrict MAYV replication with aging. In addition, we observed that mice age and type I interferon response are related to restriction of MAYV infection and muscular inflammation in mice. Moreover, MAYV continues to replicate persistently in RAG-/- mice, being detected at blood and tissues 40 days post infection, indicating that adaptive immunity is essential to MAYV clearance. Despite chronic replication, infected adult RAG-/- mice did not develop an apparent signal of muscle damage in early and late infection. On the other hand, MAYV infection in young WT and adult IFNAR-/- mice triggers an increase in the expression of pro-inflammatory mediators, such as TNF, IL-6, KC, IL-1ß, MCP-1, and RANTES, in muscle tissue, and decreases TGF-ß expression, that were not significantly modulated in adult WT and RAG-/- mice. Taken together, our data demonstrated that age, innate and adaptive immunity are important to restrict MAYV replication and that adaptive immunity is also involved in MAYV-induced tissue damage. These results contribute to the comprehension of MAYV pathogenesis, and describe translational mice models for further studies of MAYV infection, vaccine tests, and therapeutic strategies against this virus.

12.
J Neurochem ; 150(2): 138-157, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31009074

RESUMEN

Parkinson's disease (PD) is characterized by selective death of dopaminergic neurons in the substantia nigra, degeneration of the nigrostriatal pathway, increases in glutamatergic synapses in the striatum and aggregation of α-synuclein. Evidence suggests that oligomeric species of α-synuclein (αSO) are the genuine neurotoxins of PD. Although several studies have supported the direct neurotoxic effects of αSO on neurons, their effects on astrocytes have not been directly addressed. Astrocytes are essential to several steps of synapse formation and function, including secretion of synaptogenic factors, control of synaptic elimination and stabilization, secretion of neural/glial modulators, and modulation of extracellular ions, and neurotransmitter levels in the synaptic cleft. Here, we show that αSO induced the astrocyte reactivity and enhanced the synaptogenic capacity of human and murine astrocytes by increasing the levels of the known synaptogenic molecule transforming growth factor beta 1 (TGF-ß1). Moreover, intracerebroventricular injection of αSO in mice increased the number of astrocytes, the density of excitatory synapses, and the levels of TGF-ß1 in the striatum of injected animals. Inhibition of TGF-ß1 signaling impaired the effect of the astrocyte-conditioned medium on glutamatergic synapse formation in vitro and on striatal synapse formation in vivo, whereas addition of TGF-ß1 protected mesencephalic neurons against synapse loss triggered by αSO. Together, our data suggest that αSO have important effects on astrocytic functions and describe TGF-ß1 as a new endogenous astrocyte-derived molecule involved in the increase in striatal glutamatergic synaptic density present in early stages of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14514.


Asunto(s)
Astrocitos/metabolismo , Trastornos Parkinsonianos/metabolismo , Sinapsis/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neurogénesis/fisiología , Transducción de Señal/fisiología
13.
Cell Mol Neurobiol ; 37(5): 941-947, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27510317

RESUMEN

Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)-which are conventionally isolated from the bone marrow-recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Actividad Motora , Recuperación de la Función , Piel/citología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Adulto , Femenino , Humanos , Persona de Mediana Edad , Neurogénesis , Traumatismos de la Médula Espinal/patología
14.
Biochem Pharmacol ; 125: 75-83, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27823962

RESUMEN

The kinin receptor B1 and the transient receptor potential ankyrin 1 (TRPA1) work as initiators and gatekeepers of nociception and inflammation. This study reports that the nociceptive transmission induced by activation of B1 receptor is dependent on TRPA1 ion channel. The mechanical hyperalgesia was induced by intrathecal (i.t.) injection of B1 agonist des-Arginine9-bradykinin (DABK) or TRPA1 agonist cinnamaldehyde and was evaluated by the withdrawal response after von Frey Hair application in the hind paw. After behavioral experiments, lumbar spinal cord and dorsal root ganglia (DRG) were harvested to assess protein expression and mRNA by immunohistochemistry and real time-PCR, respectively. The pharmacological antagonism (HC030031) or the down-regulation of TRPA1 greatly inhibited the mechanical hyperalgesia induced by DABK. Intrathecal injection of DABK up regulated the ionized calcium binding adaptor molecule (Iba-1) in lumbar spinal cord (L5-L6); TRPA1 protein and mRNA in lumbar spinal cord; and B1 receptor mRNA in both lumbar spinal cord and DRG. The knockdown of TRPA1 prevented microglia activation induced by DABK. Furthermore, the mechanical hyperalgesia induced by either DABK or by cinnamaldehyde was significantly reduced by inhibition of cyclooxygenase (COX), protein kinase C (PKC) or phospholipase C (PLC). In summary, this study revealed that TRPA1 positively modulates the mechanical hyperalgesia induced by B1 receptor activation in the spinal cord and that the classical GPCR downstream molecules PLC, diacylglycerol (DAG), 3,4,5-inositide phosphate (IP3) and PKC are involved in the nociceptive transmission triggered by these two receptors.


Asunto(s)
Hiperalgesia/fisiopatología , Receptor de Bradiquinina B1/metabolismo , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Ratones , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/genética , Médula Espinal/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
15.
J Neurotrauma ; 33(3): 261-8, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26421658

RESUMEN

Spinal cord injury (SCI) results in loss of movement, sensibility, and autonomic control at the level of the lesion and at lower parts of the body. Several experimental strategies have been used in attempts to increase endogenous mechanisms of neuroprotection, neuroplasticity, and repair, but with limited success. It is known that glucose-dependent insulinotropic peptide (GIP) and its receptor (GIPR) can enhance synaptic plasticity, neurogenesis, and axonal outgrowth. However, their role in the injury has never been studied. The aim of this study was to evaluate the changes in expression levels of both GIP and GIPR in acute and chronic phases of SCI in rats. Following SCI (2 to 24 h after damage), the rat spinal cord showed a lesion in which the epicenter had a cavity with hemorrhage and necrosis. Furthermore, the lesion cavity also showed ballooned cells 14 and 28 days after injury. We found that SCI induced increases in GIPR expression in areas neighboring the site of injury at 6 h and 28 days after the injury. Moreover, higher GIP expression was observed in these regions on day 28. Neuronal projections from the injury epicenter showed an increase in GIP immunoreactivity 24 h and 14 and 28 days after SCI. Interestingly, GIP was also found in progenitor cells at the spinal cord canal 24 h after injury, whereas both GIP and GIPR were present in progenitor cells at the injury epicenter 14 days after in SCI animals. These results suggest that GIP and its receptor might be implicated with neurogenesis and the repair process after SCI.


Asunto(s)
Polipéptido Inhibidor Gástrico/metabolismo , Neurogénesis/fisiología , Receptores de la Hormona Gastrointestinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Masculino , Actividad Motora/fisiología , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
16.
Neurochem Res ; 38(3): 660-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23334712

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons. Although the etiology of the majority of human PD cases is unknown, experimental evidence points to oxidative stress as an early and causal event. Probucol is a lipid-lowering phenolic compound with anti-inflammatory and antioxidant properties that has been recently reported as protective in neurotoxicity and neurodegeneration models. This study was designed to investigate the effects of probucol on the vulnerability of striatal dopaminergic neurons to oxidative stress in a PD in vivo model. Swiss mice were treated with probucol during 21 days (11.8 mg/kg; oral route). Two weeks after the beginning of treatment, mice received a single intracerebroventricular (i.c.v.) infusion of 6-hydroxydopamine (6-OHDA). On the 21st day, locomotor performance, striatal oxidative stress-related parameters, and striatal tyrosine hydroxylase and synaptophysin levels, were measured as outcomes of toxicity. 6-OHDA-infused mice showed hyperlocomotion and a significant decrease in striatal tyrosine hydroxylase (TH) and synaptophysin levels. In addition, 6-OHDA-infused mice showed reduced superoxide dismutase activity and increased lipid peroxidation and catalase activity in the striatum. Notably, probucol protected against 6-OHDA-induced hyperlocomotion and striatal lipid peroxidation, catalase upregulation and decrease of TH levels. Overall, the present results show that probucol protects against 6-OHDA-induced toxicity in mice. These findings may render probucol as a promising molecule for further pharmacological studies on the search for disease-modifying treatment in PD.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Probucol/uso terapéutico , Animales , Catalasa/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxidopamina , Tirosina 3-Monooxigenasa/metabolismo
17.
Free Radic Biol Med ; 51(1): 69-77, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21440059

RESUMEN

Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H2O2 or cumene hydroperoxide (CuOOH), both at 100 µM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H2O2 decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H2O2 and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H2O2, but not in C6 cells. However, Prx-SO3 formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices.


Asunto(s)
Catalasa/metabolismo , Glutatión/metabolismo , Neuronas/metabolismo , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Animales , Derivados del Benceno/farmacología , Catalasa/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Glutatión Reductasa/antagonistas & inhibidores , Glutatión Reductasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo
18.
J Endod ; 37(1): 36-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21146073

RESUMEN

INTRODUCTION: This study proposed to investigate aspects of cell proliferation and death in the epithelium of radicular (RCs) and dentigerous (DCs) cysts. METHODS: Serial sections of 17 RCs and 9 DCs were prepared for immunohistochemical detection of caspase-3, Bcl-2, and Ki-67 antigens. RESULTS: Caspase-3 was detected mainly in the suprabasal and superficial epithelial cells of RCs and DCs, whereas Ki-67 was detected predominantly in the basal layer. Both markers had significant expression in hyperplastic epithelium related to an intense inflammation in the capsule. Immunoreactivity for Bcl-2 was restricted to the basal layer and was significantly higher in atrophic epithelium of DCs than that of RCs. CONCLUSIONS: These results suggest that epithelial proliferation is balanced by apoptosis and that the presence of inflammation inhibits the Bcl-2 expression. DCs and RCs have different formation mechanisms but have similar biological behavior in the presence of intense inflammatory infiltrate.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Quiste Dentígero/metabolismo , Células Epiteliales/metabolismo , Quiste Radicular/metabolismo , Caspasa 3/metabolismo , Proliferación Celular , Quiste Dentígero/patología , Células Epiteliales/patología , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quiste Radicular/patología , Distribución Tisular
19.
Rev Bras Ginecol Obstet ; 32(3): 112-7, 2010 Mar.
Artículo en Portugués | MEDLINE | ID: mdl-20512257

RESUMEN

PURPOSE: To compare the lamellar body number density (LBND) count in amniotic fluid using the fluorescent polarization (FP) test as a diagnostic parameter for the assessment of fetal pulmonary maturity. METHOD: This was an analytical, controlled cross-sectional study conducted on 60 pregnant women from March 2002 to December 2007. Amniotic fluid specimens were obtained by amniocentesis or at the time of caesarean section, and submitted to the LBND and FP tests (TDxFLM, Abbott Laboratories), the latter considered to be a reference test, and compared in terms of the presence or absence of respiratory distress syndrome (RDS). Cut-off values for maturity were established at 30,000 lamellar bodies/microL for the LBND test and 55 mg/g albumin for the FP test. Maternal and perinatal characteristics and neonatal evolution were evaluated, and the performance of the diagnostic tests regarding fetal pulmonary maturity was determined. In the statistical analysis, descriptive measures were used and the sensitivity, specificity and positive and predictive values of the tests were determined with the level of significance set at p<0.05. RESULTS: Maternal age ranged from 15 to 34 years (mean: 26.6 years) and gestational age ranged from 24.3 to 41.6 weeks (mean: 35.1 weeks). RDS was diagnosed in 35.1% of neonates. Perinatal characteristics such as weight, Apgar score, and RDS incidence were compared to the results of the LBND and FP tests and a significant correspondence (p<0.05) was observed between the groups of neonates clinically classified as mature and immature in both tests. The tests were concordant in 68.3% of the cases. Comparison of the PF and LBND tests revealed 100% specificity for both and a higher specificity for the LBND test (73.1% as opposed to 51.9% for the PF test). The gold standard for the determination of fetal maturity is the occurrence of RDS. The positive predictive value of the LBND test was higher (36.4%) than that of the FP test (24.2%) (p<0.05) and the negative predictive value was 100% for both tests. CONCLUSIONS: The present study demonstrated that the LBND test has 100% sensitivity and higher specificity than the reference test (FP). In addition, the LBND test is considered to be rapid, accessible, inexpensive and feasible for the Brazilian reality, and it can be used as a reliable test for the prediction of fetal pulmonary maturity.


Asunto(s)
Madurez de los Órganos Fetales , Pulmón/embriología , Adolescente , Adulto , Líquido Amniótico , Estudios Transversales , Técnicas de Diagnóstico Obstétrico y Ginecológico , Polarización de Fluorescencia , Humanos , Orgánulos , Adulto Joven
20.
Rev. bras. ginecol. obstet ; 32(3): 112-117, mar. 2010. tab
Artículo en Portugués | LILACS | ID: lil-547536

RESUMEN

Objetivo: comparar o teste de contagem de corpos lamelares (CCL) no líquido amniótico com o teste da polarização fluorescente (PF) como parâmetro diagnóstico para avaliação da maturidade pulmonar fetal. Método: estudo transversal, analítico e controlado realizado com 60 gestantes atendidas no período de março de 2002 a dezembro de 2007. Foram colhidas amostras de líquido amniótico e realizados os testes de CCL e PF (TDxFLM II), considerados de referência, e comparados à presença ou ausência da Síndrome do Desconforto Respiratório (SDR). Foram estabelecidos valores de corte para maturidade de 30 mil corpos lamelares/µL para o teste da CCL e 55 mg/g de albumina para o PF. Foram avaliadas as características maternas e perinatais, a evolução neonatal e o desempenho dos testes diagnósticos para predição da maturidade pulmonar fetal. Na análise estatística, foram utilizadas medidas descritivas e calculados os valores referentes à sensibilidade, especificidade, valor preditivo positivo e negativo dos testes, considerando-se significativos valores de p<0,05. Resultados: a idade materna variou entre 15 e 43 anos, com média de 26,6 anos. A idade gestacional variou entre 24,3 e 41,6 semanas, com média de 35,1 semanas. A Síndrome do Desconforto Respiratório foi diagnosticada em 13,3 por cento dos neonatos. As características perinatais, como peso, índice de Apgar, incidência de SDR, foram comparadas aos resultados dos testes de CCL e PF, sendo observada uma correspondência, estatisticamente significativa (p<0,05), entre os grupos de neonatos clinicamente classificados como imaturos e maduros em ambos os testes. Os testes foram concordantes em 68,3 por cento dos casos. Quando se comparou o teste da PF com o teste da CCL, a sensibilidade foi de 100 por cento para ambos, e a especificidade do teste da CCL foi superior (73,1 por cento), quando comparado com o teste de PF (51,9 por cento). O padrão-ouro para determinação da maturidade fetal é a ocorrência da SDR. O valor...


Purpose: to compare the lamellar body number density (LBND) count in amniotic fluid using the fluorescent polarization (FP) test as a diagnostic parameter for the assessment of fetal pulmonary maturity. Method: this was an analytical, controlled cross-sectional study conducted on 60 pregnant women from March 2002 to December 2007. Amniotic fluid specimens were obtained by amniocentesis or at the time of caesarean section, and submitted to the LBND and FP tests (TDxFLM®, Abbott Laboratories), the latter considered to be a reference test, and compared in terms of the presence or absence of respiratory distress syndrome (RDS). Cut-off values for maturity were established at 30,000 lamellar bodies/µL for the LBND test and 55 mg/g albumin for the FP test. Maternal and perinatal characteristics and neonatal evolution were evaluated, and the performance of the diagnostic tests regarding fetal pulmonary maturity was determined. In the statistical analysis, descriptive measures were used and the sensitivity, specificity and positive and predictive values of the tests were determined with the level of significance set at p<0.05. Results: maternal age ranged from 15 to 34 years (mean: 26.6 years) and gestational age ranged from 24.3 to 41.6 weeks (mean: 35.1 weeks). RDS was diagnosed in 35.1 percent of neonates. Perinatal characteristics such as weight, Apgar score, and RDS incidence were compared to the results of the LBND and FP tests and a significant correspondence (p<0.05) was observed between the groups of neonates clinically classified as mature and immature in both tests. The tests were concordant in 68.3 percent of the cases. Comparison of the PF and LBND tests revealed 100 percent specificity for both and a higher specificity for the LBND test (73.1 percent as opposed to 51.9 percent for the PF test). The gold standard for the determination of fetal maturity is the occurrence of RDS. The positive predictive value of the LBND test was higher (36.4%) than that...


Asunto(s)
Adolescente , Adulto , Humanos , Adulto Joven , Madurez de los Órganos Fetales , Pulmón/embriología , Líquido Amniótico , Estudios Transversales , Técnicas de Diagnóstico Obstétrico y Ginecológico , Polarización de Fluorescencia , Orgánulos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA