Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500680

RESUMEN

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Asunto(s)
Neoplasias del Colon , Liposomas , Nanopartículas , Microambiente Tumoral , Animales , Ratones , Ligandos , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Factor de Necrosis Tumoral alfa , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
2.
Nat Commun ; 15(1): 590, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238326

RESUMEN

A safe and effective vaccine with long-term protection against SARS-CoV-2 variants of concern (VOCs) is a global health priority. Here, we develop lipid nanoparticles (LNPs) to provide safe and effective delivery of plasmid DNA (pDNA) and show protection against VOCs in female small animal models. Using a library of LNPs encapsulating unique barcoded DNA (b-DNA), we screen for b-DNA delivery after intramuscular administration. The top-performing LNPs are further tested for their capacity of pDNA uptake in antigen-presenting cells in vitro. The lead LNP is used to encapsulate pDNA encoding the HexaPro version of SARS-CoV-2 spike (LNP-HPS) and immunogenicity and protection is tested in vivo. LNP-HPS elicit a robust protective effect against SARS-CoV-2 Gamma (P.1), correlating with reduced lethality, decreased viral load in the lungs and reduced lung damage. LNP-HPS induce potent humoral and T cell responses against P.1, and generate high levels of neutralizing antibodies against P.1 and Omicron (B.1.1.529). Our findings indicate that the protective efficacy and immunogenicity elicited by LNP-HPS are comparable to those achieved by the approved COVID-19 vaccine from Biontech/Pfizer in animal models. Together, these findings suggest that LNP-HPS hold great promise as a vaccine candidate against VOCs.


Asunto(s)
COVID-19 , ADN Forma B , Vacunas de ADN , Femenino , Animales , Humanos , SARS-CoV-2/genética , Vacunas de ADN/genética , Nanovacunas , Vacunas contra la COVID-19 , COVID-19/prevención & control , ADN , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Biomed Pharmacother ; 170: 115981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091634

RESUMEN

CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-É£ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Ratones , Animales , ARN Interferente Pequeño , Distribución Tisular , Encéfalo , Inmunidad , Quimiocina CXCL12/genética
4.
Front Immunol ; 14: 1193256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545509

RESUMEN

Background: Plasmodium spp. infection triggers the production of inflammatory cytokines that are essential for parasite control, and conversely responsible for symptoms of malaria. Monocytes play a role in host defense against Plasmodium vivax infection and represent the main source of inflammatory cytokines and reactive oxygen species. The anti-inflammatory cytokine IL-10 is a key regulator preventing exacerbated inflammatory responses. Studies suggested that different clinical presentations of malaria are strongly associated with an imbalance in the production of inflammatory and anti-inflammatory cytokines. Methods: A convenience sampling of peripheral blood mononuclear cells from Plasmodium vivax-infected patients and healthy donors were tested for the characterization of cytokine and adenosine production and the expression of ectonucleotidases and purinergic receptors. Results: Here we show that despite a strong inflammatory response, monocytes also bear a modulatory role during malaria. High levels of IL-10 are produced during P. vivax infection and its production can be triggered in monocytes by P. vivax-infected reticulocytes. Monocytes express high levels of ectonucleotidases, indicating their important role in extracellular ATP modulation and consequently in adenosine production. Plasmatic levels of adenosine are not altered in patients experiencing acute malaria; however, their monocyte subsets displayed an increased expression of P1 purinergic receptors. In addition, adenosine decreases Tumor Necrosis Factor production by monocytes, which was partially abolished with the blockage of the A2a receptor. Conclusion: Monocytes have a dual role, attempting to control both the P. vivax infection and the inflammatory response. Purinergic receptor modulators emerge as an untapped approach to ameliorate clinical malaria.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Plasmodium vivax , Interleucina-10 , Leucocitos Mononucleares/metabolismo , Malaria Vivax/parasitología , Citocinas/metabolismo , Inflamación
5.
Sci Rep ; 12(1): 19805, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396745

RESUMEN

Kupffer cells (KCs) are self-maintained tissue-resident macrophages that line liver sinusoids and play an important role on host defense. It has been demonstrated that upon infection or intense liver inflammation, KCs might be severely depleted and replaced by immature monocytic cells; however, the mechanisms of cell death and the alterations on liver immunity against infections deserves further investigation. We explored the impact of acute Plasmodium infection on KC biology and on the hepatic immune response against secondary infections. Similar to patients, infection with Plasmodium chabaudi induced acute liver damage as determined by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. This was associated with accumulation of hemozoin, increased of proinflammatory response and impaired bacterial and viral clearance, which led to pathogen spread to other organs. In line with this, mice infected with Plasmodium had enhanced mortality during secondary infections, which was associated with increased production of mitochondrial superoxide, lipid peroxidation and increased free iron within KCs-hallmarks of cell death by ferroptosis. Therefore, we revealed that accumulation of iron with KCs, triggered by uptake of circulating hemozoin, is a novel mechanism of macrophage depletion and liver inflammation during malaria, providing novel insights on host susceptibility to secondary infections. Malaria can cause severe liver damage, along with depletion of liver macrophages, which can predispose individuals to secondary infections and enhance the chances of death.


Asunto(s)
Coinfección , Malaria , Plasmodium chabaudi , Sobreinfección , Ratones , Animales , Plasmodium chabaudi/fisiología , Macrófagos del Hígado/metabolismo , Coinfección/complicaciones , Malaria/metabolismo , Muerte Celular , Inflamación/metabolismo , Hierro/metabolismo
6.
J Clin Virol Plus ; 2(3): 100101, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35959109

RESUMEN

There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.

7.
J Clin Virol Plus ; : 100103, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35993012

RESUMEN

There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.

8.
PLoS Negl Trop Dis ; 15(10): e0009077, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714821

RESUMEN

Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.


Asunto(s)
Anopheles/parasitología , Malaria Vivax/transmisión , Plasmodium vivax/fisiología , Animales , Anopheles/fisiología , Infecciones Asintomáticas/epidemiología , Sangre/parasitología , Brasil/epidemiología , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Plasmodium vivax/genética , Estaciones del Año
9.
mBio ; 12(4): e0124721, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311577

RESUMEN

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Monocitos/metabolismo , Monocitos/patología , Plasmodium vivax/inmunología , Reticulocitos/parasitología , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Anciano , Femenino , Expresión Génica , Glucólisis , Humanos , Malaria Vivax/inmunología , Malaria Vivax/fisiopatología , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Monocitos/citología , Monocitos/inmunología , Fagosomas/inmunología , Fagosomas/parasitología , Plasmodium vivax/genética , Plasmodium vivax/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Adulto Joven
10.
J Immunol Res ; 2021: 5568077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007852

RESUMEN

METHODS: A total of 1028 sera samples were used for the development and validation of ELISA (321 samples from L. infantum-infected patients, 62 samples from VL/AIDS coinfected patients, 236 samples from patients infected with other diseases, and 409 samples from healthy donors). A total of 520 sera samples were used to develop and validate ICT (249 samples from L. infantum-infected patients, 46 samples from VL/AIDS coinfected patients, 40 samples from patients infected with other diseases, and 185 samples from healthy donors). Findings. Using the validation sera panels, DTL-4-based ELISA displayed an overall sensitivity of 94.61% (95% CI: 89.94-97.28), a specificity of 99.41% (95% CI: 96.39-99.99), and an accuracy of 97.02% (95% CI: 94.61-98.38), while for ICT, sensitivity, specificity, and accuracy values corresponded to 91.98% (95% CI: 86.65-95.39), 100.00% (95% CI: 96.30-100.00), and 95.14% (95% CI: 91.62-97.15), respectively. When testing sera samples from VL/AIDS coinfected patients, DTL-4-ELISA displayed a sensitivity of 77.42% (95% CI: 65.48-86.16), a specificity of 99.41% (95% CI: 96.39-99.99), and an accuracy of 93.51% (95% CI: 89.49%-96.10%), while for DTL-4-ICT, sensitivity was 73.91% (95% CI: 59.74-84.40), specificity was 90.63% (95% CI: 81.02-95.63), and accuracy was 82.00% (95% CI: 73.63-90.91). CONCLUSION: DTL-4 is a promising candidate antigen for serodiagnosis of VL patients, including those with VL/AIDS coinfection, when incorporated into ELISA or ICT test formats.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Leishmaniasis Visceral/diagnóstico , Proteínas Protozoarias/inmunología , Proteínas Recombinantes de Fusión/inmunología , Pruebas Serológicas/métodos , Adulto , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Cromatografía de Afinidad/métodos , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Leishmania infantum/inmunología , Leishmaniasis Visceral/sangre , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Masculino , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/genética , Sensibilidad y Especificidad
11.
Viruses ; 12(9)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858804

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes a disease characterized by the acute onset of fever accompanied by arthralgia and intense joint pain. Clinical similarities and cocirculation of this and other arboviruses in many tropical countries highlight the necessity for efficient and accessible diagnostic tools. CHIKV envelope proteins are highly conserved among alphaviruses and, particularly, the envelope 2 glycoprotein (CHIKV-E2) appears to be immunodominant and has a considerable serodiagnosis potential. Here, we investigate how glycosylation of CHIKV-E2 affects antigen/antibody interaction and how this affects the performance of CHIKV-E2-based Indirect ELISA tests. We compare two CHIKV-E2 recombinant antigens produced in different expression systems: prokaryotic-versus eukaryotic-made recombinant proteins. CHIKV-E2 antigens are expressed either in E. coli BL21(DE3)-a prokaryotic system unable to produce post-translational modifications-or in HEK-293T mammalian cells-a eukaryotic system able to add post-translational modifications, including glycosylation sites. Both prokaryotic and eukaryotic recombinant CHIKV-E2 react strongly to anti-CHIKV IgG antibodies, showing accuracy levels that are higher than 90%. However, the glycan-added viral antigen presents better sensitivity and specificity (85 and 98%) than the non-glycosylated antigen (81 and 71%, respectively) in anti-CHIKV IgM ELISA assays.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/inmunología , Ensayo de Inmunoadsorción Enzimática , Pruebas Serológicas , Proteínas del Envoltorio Viral/inmunología , Antígenos Virales/biosíntesis , Antígenos Virales/química , Antígenos Virales/aislamiento & purificación , Escherichia coli , Glicosilación , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Polisacáridos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/aislamiento & purificación
12.
Immunology ; 160(1): 90-102, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32128816

RESUMEN

Multifunctional interleukin 10 (IL10)+ Th1 cells have been implicated in favorable evolution of many infectious diseases, promoting an efficacious immune response while limiting immunopathology. Here, we investigated the presence of multifunctional CD4+ and CD8+ T-cells that expressed interferon gamma (IFNγ), IL10 and tumor necrosis factor (TNF), or its combinations during dengue infection. Peripheral blood mononuclear cells (PBMCs) from outpatients with dengue (mild dengue forms) and hospitalized patients (or patients with dengue with warning signs and severe dengue) were cultured in the presence of envelope (ENV) or NS3 peptide libraries of DENV during critical (hospitalization period) and convalescence phases. The production of IFNγ, IL10 and TNF by CD4+ and CD8+ T-cells was assessed by flow cytometry. Our data show that patients with mild dengue, when compared with patients with dengue with warning signs and severe dengue, presented higher frequencies of multifunctional T-cells like NS3-specific IFNγ/IL10-producing CD4+ T-cells in critical phase and NS3- and ENV-specific CD8+ T-cells producing IFNγ/IL10. In addition, NS3-specific CD8+ T-cells producing high levels of IFNγ/TNF and IFNγ/TNF/IL10 were also observed in the mild dengue group. We observed that multifunctional T-cells produced higher levels of cytokines as measured by intracellular content when compared with single producer T-cells. Importantly, multifunctional CD4+ and CD8+ T-cells producing IFNγ, TNF and IL10 simultaneously displayed positive correlation with platelet levels, suggesting a protective role of this population. The presence of IL10+ Th1 and IL10+ Tc1 multifunctional cells was associated with mild dengue presentation, suggesting that these cells play a role in clinical evolution of dengue infection.


Asunto(s)
Dengue/diagnóstico , Dengue/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Anciano , Antígenos Virales/inmunología , Brasil , Estudios de Casos y Controles , Dengue/sangre , Virus del Dengue/inmunología , Femenino , Voluntarios Sanos , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , ARN Helicasas/inmunología , Serina Endopeptidasas/inmunología , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas no Estructurales Virales/inmunología , Adulto Joven
13.
Data Brief ; 25: 104015, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31194157

RESUMEN

We describe here the development of an in-house enzyme linked immunosorbent assay (ELISA) for the diagnostic of Chikungunya virus (CHIKV) infections using a recombinant protein from CHIKV. The recombinant protein gene was designed based on 154 sequences and we used computational methods to predict its structure and antigenic potential. To confirm predictions, the gene coding for the recombinant CHIKV protein (rCHIKVp) was synthetized and expressed in prokaryotic system. Subsequently, the protein was purified by affinity chromatography and used as antigen in an indirect ELISA. We present data regarding the optimization of the recombinant antigen production and preparation of the ELISA to detect IgG against CHIKV in human sera.

14.
J Clin Virol ; 113: 27-30, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836281

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) causes a disease characterized by acute onset of fever accompanied by arthralgia. Clinical similarities and co-circulation of other arboviruses such as Dengue virus (DENV) and Zika virus (ZIKV), have complicated their differentiation, making their diagnoses a challenge for the health authorities. Misdiagnosis is a serious issue to the management of patients and development of public health measures. OBJECTIVES: We carried out further screening of CHIKV, DENV and ZIKV cases in Minas Gerais, Brazil, after diagnostics were already issued by a state laboratory and according to the Brazilian Ministry of Health (BMH) policy. Our aim was to look for possible co-infections or previous arboviruses' exposure. STUDY DESIGN: Sera from 193 patients with symptoms of arboviral infections were tested for DEV, ZKV and/or CHIKV by the State laboratory, according to clinical suspicion and following standard BMH guidelines. After an official diagnosis was issued for each patient, we retested samples applying a broader panel of ELISA-based serological tests. RESULTS: We identified 13 patients with concurrent or consecutive infections (IgM positive for more than one arbovirus), including 11 individuals that were positive for CHIKV and other previously confirmed arbovirus infection. DISCUSSION: Guidelines established in many arbovirus-endemic countries prioritizes the diagnosis of Zika and Dengue and no further analyzes are done when samples are positive for those viruses. As a result, possible cases of co-infections with chikungunya are neglected, which affects the epidemiological assessments of virus circulation, patient management, and the development of public health policies.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Chikungunya/diagnóstico , Coinfección/virología , Dengue/diagnóstico , Infección por el Virus Zika/diagnóstico , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Coinfección/epidemiología , Dengue/epidemiología , Brotes de Enfermedades , Enfermedades Endémicas/estadística & datos numéricos , Femenino , Humanos , Recién Nacido , Embarazo , ARN Viral/sangre , Pruebas Serológicas , Infección por el Virus Zika/epidemiología
15.
Mem Inst Oswaldo Cruz ; 114: e180405, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30726344

RESUMEN

BACKGROUND: Visceral Leishmaniasis (VL) is an infectious disease that is a significant cause of death among infants aged under 1 year and the elderly in Brazil. Serodiagnosis is a mainstay of VL elimination programs; however, it has significant limitations due to low accuracy. OBJECTIVE: This study aimed to evaluate three recombinant Leishmania infantum proteins (rFc, rC9, and rA2) selected from previous proteomics and genomics analyses to develop enzyme-linked immunosorbent assay (ELISA) and immunochromatographic tests (ICT) for the serodiagnosis of human VL (HVL) and canine VL (CVL). METHODS: A total of 186 human (70 L. infantum-infected symptomatic, 20 other disease-infected, and 96 healthy) and 185 canine (82 L. infantum-infected symptomatic, 27 L. infantum-infected asymptomatic, and 76 healthy) sera samples were used for antibody detection. FINDINGS: Of the three proteins, rA2 (91.5% sensitivity and 87% specificity) and rC9 (95.7% sensitivity and 87.5% specificity) displayed the best performance in ELISA-HVL and ELISA-CVL, respectively. ICT-rA2 also displayed the best performance for HVL diagnosis (92.3% sensitivity and 88.0% specificity) and had high concordance with immunofluorescence antibody tests (IFAT), ELISA-rK39, IT-LEISH®, and ELISAEXT. ICT-rFc, ICT-rC9, and ICT-rA2 had sensitivities of 88.6%, 86.5%, and 87.0%, respectively, with specificity values of 84.0%, 92.0%, and 100%, respectively for CVL diagnosis. MAIN CONCLUSIONS: The three antigens selected by us are promising candidates for VL diagnosis regardless of the test format, although the antigen combinations and test parameters may warrant further optimisation.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/sangre , Leishmania infantum/inmunología , Leishmaniasis Visceral/diagnóstico , Proteínas Protozoarias/sangre , Animales , Antígenos de Protozoos/inmunología , Estudios de Casos y Controles , Cromatografía de Afinidad , Perros , Ensayo de Inmunoadsorción Enzimática , Humanos , Leishmaniasis Visceral/veterinaria , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/sangre , Proteínas Recombinantes/inmunología , Sensibilidad y Especificidad
16.
Mucosal Immunol ; 12(2): 312-322, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30337650

RESUMEN

Malaria-associated acute respiratory distress syndrome (MA-ARDS) and acute lung injury (ALI) are complications that cause lung damage and often leads to death. The MA-ARDS/ALI is associated with a Type 1 inflammatory response mediated by T lymphocytes and IFN-γ. Here, we used the Plasmodium berghei NK65 (PbN)-induced MA-ALI/ARDS model that resembles human disease and confirmed that lung CD4+ and CD8+ T cells predominantly expressed Tbet and IFN-γ. Surprisingly, we found that development of MA-ALI/ARDS was dependent on functional CCR4, known to mediate the recruitment of Th2 lymphocytes and regulatory T cells. However, in this Type 1 inflammation-ARDS model, CCR4 was not involved in the recruitment of T lymphocytes, but was required for the emergence of TNF-α/iNOS producing dendritic cells (Tip-DCs) in the lungs. In contrast, recruitment of Tip-DCs and development of MA-ALI/ARDS were not altered in CCR2-/- mice. Importantly, we showed that NOS2-/- mice are resistant to PbN-induced lung damage, indicating that reactive nitrogen species produced by Tip-DCs play an essential role in inducing MA-ARDS/ALI. Lastly, our experiments suggest that production of IFN-γ primarily by CD8+ T cells is required for inducing Tip-DCs differentiation in the lungs and the development of MA-ALI/ARDS model.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Malaria/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Plasmodium berghei/fisiología , Receptores CCR4/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Células Th2/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Receptores CCR4/genética , Factor de Necrosis Tumoral alfa/metabolismo
17.
Mem. Inst. Oswaldo Cruz ; 114: e180405, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-984760

RESUMEN

BACKGROUND Visceral Leishmaniasis (VL) is an infectious disease that is a significant cause of death among infants aged under 1 year and the elderly in Brazil. Serodiagnosis is a mainstay of VL elimination programs; however, it has significant limitations due to low accuracy. OBJECTIVE This study aimed to evaluate three recombinant Leishmania infantum proteins (rFc, rC9, and rA2) selected from previous proteomics and genomics analyses to develop enzyme-linked immunosorbent assay (ELISA) and immunochromatographic tests (ICT) for the serodiagnosis of human VL (HVL) and canine VL (CVL). METHODS A total of 186 human (70 L. infantum-infected symptomatic, 20 other disease-infected, and 96 healthy) and 185 canine (82 L. infantum-infected symptomatic, 27 L. infantum-infected asymptomatic, and 76 healthy) sera samples were used for antibody detection. FINDINGS Of the three proteins, rA2 (91.5% sensitivity and 87% specificity) and rC9 (95.7% sensitivity and 87.5% specificity) displayed the best performance in ELISA-HVL and ELISA-CVL, respectively. ICT-rA2 also displayed the best performance for HVL diagnosis (92.3% sensitivity and 88.0% specificity) and had high concordance with immunofluorescence antibody tests (IFAT), ELISA-rK39, IT-LEISH®, and ELISAEXT. ICT-rFc, ICT-rC9, and ICT-rA2 had sensitivities of 88.6%, 86.5%, and 87.0%, respectively, with specificity values of 84.0%, 92.0%, and 100%, respectively for CVL diagnosis. MAIN CONCLUSIONS The three antigens selected by us are promising candidates for VL diagnosis regardless of the test format, although the antigen combinations and test parameters may warrant further optimisation.


Asunto(s)
Animales , Perros , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antiprotozoarios/sangre , Leishmania infantum/inmunología , Cromatografía de Afinidad
18.
PLoS Pathog ; 13(7): e1006484, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700710

RESUMEN

Although the importance of humoral immunity to malaria has been established, factors that control antibody production are poorly understood. Follicular helper T cells (Tfh cells) are pivotal for generating high-affinity, long-lived antibody responses. While it has been proposed that expansion of antigen-specific Tfh cells, interleukin (IL) 21 production and robust germinal center formation are associated with protection against malaria in mice, whether Tfh cells are found during Plasmodium vivax (P. vivax) infection and if they play a role during disease remains unknown. Our goal was to define the role of Tfh cells during P. vivax malaria. We demonstrate that P. vivax infection triggers IL-21 production and an increase in Tfh cells (PD-1+ICOS+CXCR5+CD45RO+CD4+CD3+). As expected, FACS-sorted Tfh cells, the primary source of IL-21, induced immunoglobulin production by purified naïve B cells. Furthermore, we found that P. vivax infection alters the B cell compartment and these alterations were dependent on the number of previous infections. First exposure leads to increased proportions of activated and atypical memory B cells and decreased frequencies of classical memory B cells, whereas patients that experienced multiple episodes displayed lower proportions of atypical B cells and higher frequencies of classical memory B cells. Despite the limited sample size, but consistent with the latter finding, the data suggest that patients who had more than five infections harbored more Tfh cells and produce more specific antibodies. P. vivax infection triggers IL-21 production by Tfh that impact B cell responses in humans.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/inmunología , Malaria Vivax/inmunología , Plasmodium vivax/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Adulto , Animales , Femenino , Humanos , Activación de Linfocitos , Malaria Vivax/parasitología , Masculino , Ratones , Persona de Mediana Edad , Plasmodium vivax/inmunología , Adulto Joven
19.
Virol J ; 14(1): 37, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28222752

RESUMEN

BACKGROUND: Herpes simplex virus type 1 (HSV-1) cause not only mild symptoms but also blindness and encephalitis. It was previously shown that the immune response against HSV-1 occurs mainly in the trigeminal ganglia (TG) and that Toll-like receptors 2 and 9 (TLR2/9) are important in mediating this response. It was also demonstrated that iNOS (nitric oxide synthase) and interleukin 1 beta (IL-1ß) play an essential role in the defense against HSV-1 infection. Importantly, the present work aimed to identify the primary cells responsible for iNOS and IL-1ß production and search for other important molecules and cells that might or might not depend on TLR2/9 receptors to mediate the immune response against HSV-1. METHODS: C57BL/6 (wild type, WT) and TLR2/9-/- mice were infected by the intranasal route with HSV-1 (1 × 106 p.f.u.). Cells were obtained from the TG and spleen tissues and the profile of immune cells was determined by flow cytometry in infected and mock infected WT and knockout mice. The percentage of cells producing iNOS, IL-1ß, granzyme B and perforin was also determined by flow cytometry. Chemokine monocyte chemoattractant protein-1 (MCP1) was measured by Cytometric Bead Array (CBA) in the TG, spleen and lung. Expression of type I interferons (IFNs), interleukins (IL) 5 and 10, IL-1ß and granzyme B were quantified by real time PCR. RESULTS: The results indicate that dendritic cells (DCs) and monocytes/macrophages (Mo/Mϕ) were the main sources of IL-1ß and iNOS, respectively, which, together with type I IFNs, were essential for the immune response against HSV-1. Additionally, we showed that granzyme B produced by CD8+ T and NK lymphocytes and MCP-1 were also important for this immune response. Moreover, our data indicate that the robust production of MCP-1 and granzyme B is either TLR-independent or down regulated by TLRs and occurs in the TG of TLR2/9-/- infected mice. CONCLUSION: Taken together, our data provide strong evidence that the responses mediated by DCs, Mo/Mϕ, NK and CD8+ T lymphocytes through IL-1ß, iNOS and granzyme B production, respectively, together with the production of type I IFN early in the infection, are crucial to host defense against HSV-1.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Herpesvirus Humano 1/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Ganglio del Trigémino/inmunología , Ganglio del Trigémino/virología , Animales , Citometría de Flujo , Granzimas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/metabolismo
20.
PLoS One ; 8(5): e63343, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23704900

RESUMEN

BACKGROUND: American tegumentary leishmaniasis (ATL) is endemic in Latin America, where Brazil has over 27 thousand cases per year. The aim of the present study was to develop an immunohistochemical method (IHC) for ATL diagnosis. For this purpose, we used serum from a dog naturally infected with Leishmania (L) infantum (canine hyperimmune serum) as the primary antibody, followed by a detection system with a secondary biotinylated antibody. METHODOLOGY: Skin samples were obtained from 73 patients in an endemic area of Caratinga, Minas Gerais (MG) State, Brazil all testing positive for ATL with the Montenegro skin test, microscopy, and PCR. Canine hyperimmune serum of a dog naturally infected with Leishmania (L.) infantum was employed as a primary antibody in an immunohistochemical diagnostic method using streptavidin-biotin peroxidase. To assess the specificity of this reaction, IHC assays employing two monoclonal antibodies were carried out. As the polymer-based technology is less time-consuming and labor intensive than the IHC labeled streptavidin-biotin peroxidase method, we compared the two methods for all samples. RESULTS: The IHC method detected ATL in 67 of the 73 cases (91.8%). Immunolabeled parasites were primarily detected inside macrophages either in the superficial or the deep dermis. Detection was facilitated by the high contrast staining of amastigotes (dark brown) against the light blue background. A lower detection rate (71.2%) was observed with the both of the monoclonal Leishmania antibodies compared to the canine hyperimmune serum. This may have been due to a non-specific background staining observed in all histological samples rendering positive detection more difficult. The higher efficacy of the canine hyperimmune serum in the IHC method was confirmed by the method using streptavidin-biotin peroxidase as well as that with the polymer-based technology (biotin-avidin-free system). CONCLUSIONS: The data are encouraging with regard to validating IHC as a standard alternative method for ATL diagnosis.


Asunto(s)
Leishmania/aislamiento & purificación , Leishmaniasis Cutánea/patología , Leishmaniasis Cutánea/parasitología , Piel/patología , Piel/parasitología , Adolescente , Adulto , Anciano , Animales , Brasil , Niño , Preescolar , Perros , Femenino , Humanos , Inmunohistoquímica , Lactante , Masculino , Persona de Mediana Edad , Parasitemia/parasitología , Parasitemia/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA