Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113955, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507414

RESUMEN

Epicardial adipose tissue (eAT) is a metabolically active fat depot that has been associated with a wide array of cardiac homeostatic functions and cardiometabolic diseases. A full understanding of its diverse physiological and pathological roles is hindered by the dearth of animal models. Here, we show, in the heart of an ectothermic teleost, the zebrafish, the existence of a fat depot localized underneath the epicardium, originating from the epicardium and exhibiting the molecular signature of beige adipocytes. Moreover, a subset of adipocytes within this cardiac fat tissue exhibits primitive thermogenic potential. Transcriptomic profiling and cross-species analysis revealed elevated glycolytic and cardiac homeostatic gene expression with downregulated obesity and inflammatory hallmarks in the teleost eAT compared to that of lean aged humans. Our findings unveil epicardium-derived beige fat in the heart of an ectotherm considered to possess solely white adipocytes for energy storage and identify pathways that may underlie age-driven remodeling of human eAT.


Asunto(s)
Tejido Adiposo Beige , Pez Cebra , Animales , Humanos , Anciano , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Epicárdico , Tejido Adiposo/metabolismo , Pericardio/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo
2.
Neuron ; 112(7): 1150-1164.e6, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38295792

RESUMEN

Animals constantly need to judge the valence of an object in their environment: is it potential food or a threat? The brain makes fundamental decisions on the appropriate behavioral strategy by integrating external information from sensory organs and internal signals related to physiological needs. For example, a hungry animal may take more risks than a satiated one when deciding to approach or avoid an object. Using a proteomic profiling approach, we identified the Calmodulin-interacting peptide Pcp4a as a key regulator of foraging-related decisions. Food intake reduced abundance of protein and mRNA of pcp4a via dopamine D2-like receptor-mediated repression of adenylate cyclase. Accordingly, deleting the pcp4a gene made zebrafish larvae more risk averse in a binary decision assay. Strikingly, neurons in the tectum became less responsive to prey-like visual stimuli in pcp4a mutants, thus biasing the behavior toward avoidance. This study pinpoints a molecular mechanism modulating behavioral choice according to internal state.


Asunto(s)
Calmodulina , Pez Cebra , Animales , Pez Cebra/fisiología , Calmodulina/metabolismo , Proteómica , Neuronas/fisiología , Hambre/fisiología , Conducta Alimentaria/fisiología
3.
Dev Cell ; 58(22): 2460-2476.e7, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37875117

RESUMEN

The autonomic nervous system plays a pivotal role in cardiac repair. Here, we describe the mechanistic underpinning of adrenergic signaling in fibrotic and regenerative response of the heart to be dependent on immunomodulation. A pharmacological approach identified adrenergic receptor alpha-1 as a key regulator of macrophage phenotypic diversification following myocardial damage in zebrafish. Genetic manipulation and single-cell transcriptomics showed that the receptor signals activation of an "extracellular matrix remodeling" transcriptional program in a macrophage subset, which serves as a key regulator of matrix composition and turnover. Mechanistically, adrenergic receptor alpha-1-activated macrophages determine activation of collagen-12-expressing fibroblasts, a cellular determinant of cardiac regenerative niche, through midkine-mediated paracrine crosstalk, allowing lymphatic and blood vessel growth and cardiomyocyte proliferation at the lesion site. These findings identify the mechanism of adrenergic signaling in macrophage phenotypic and functional determination and highlight the potential of neural modulation for regulation of fibrosis and coordination of myocardial regenerative response.


Asunto(s)
Adrenérgicos , Pez Cebra , Animales , Pez Cebra/genética , Miocardio/patología , Matriz Extracelular/patología , Macrófagos/patología , Fibrosis , Fibroblastos/patología , Receptores Adrenérgicos , Miocitos Cardíacos/patología
4.
FEBS J ; 290(4): 913-930, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34894086

RESUMEN

Development of the heart, from early morphogenesis to functional maturation, as well as maintenance of its homeostasis are tasks requiring collaborative efforts of cardiac tissue and different extra-cardiac organ systems. The brain, lymphoid organs, and gut are among the interaction partners that can communicate with the heart through a wide array of paracrine signals acting at local or systemic level. Disturbance of cardiac homeostasis following ischemic injury also needs immediate response from these distant organs. Our hearts replace dead muscles with non-contractile fibrotic scars. We have learned from animal models capable of scarless repair that regenerative capability of the heart does not depend only on competency of the myocardium and cardiac-intrinsic factors but also on long-range molecular signals originating in other parts of the body. Here, we provide an overview of inter-organ signals that take part in development and regeneration of the heart. We highlight recent findings and remaining questions. Finally, we discuss the potential of inter-organ modulatory approaches for possible therapeutic use.


Asunto(s)
Miocitos Cardíacos , Regeneración , Animales , Regeneración/fisiología , Miocardio , Comunicación Paracrina , Modelos Animales
5.
Cardiovasc Res ; 119(5): 1234-1249, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36536484

RESUMEN

AIMS: Dysregulated immune response contributes to inefficiency of treatment strategies to control hypertension and reduce the risk of end-organ damage. Uncovering the immune pathways driving the transition from the onset of hypertensive stimulus to the manifestation of multi-organ dysfunction are much-needed insights for immune targeted therapy. METHODS AND RESULTS: To aid visualization of cellular events orchestrating multi-organ pathogenesis, we modelled hypertensive cardiovascular remodelling in zebrafish. Zebrafish larvae exposed to ion-poor environment exhibited rapid angiotensinogen up-regulation, followed by manifestation of arterial hypertension and cardiac remodelling that recapitulates key characteristics of incipient heart failure with preserved ejection fraction. In the brain, time-lapse imaging revealed the occurrence of cerebrovascular regression through endothelial retraction and migration in response to the ion-poor treatment. This phenomenon is associated with macrophage/microglia-endothelial contacts and endothelial junctional retraction. Cytokine and transcriptomic profiling identified systemic up-regulation of interferon-γ and interleukin 1ß and revealed altered macrophage/microglia transcriptional programme characterized by suppression of innate immunity and vasculo/neuroprotective gene expression. Both zebrafish and a murine model of pressure overload-induced brain damage demonstrated that the brain pathology and macrophage/microglia phenotypic alteration are dependent on interferon-γ signalling. In zebrafish, interferon-γ receptor 1 mutation prevents cerebrovascular remodelling and dysregulation of macrophage/microglia transcriptomic profile. Supplementation of bone morphogenetic protein 5 identified from the transcriptomic approach as a down-regulated gene in ion-poor-treated macrophages/microglia that is rescued by interferon-γ blockage, mitigated cerebral microvessel loss. In mice subjected to transverse aortic constriction-induced pressure overload, typically developing cerebrovascular injury, neuroinflammation, and cognitive dysfunction, interferon-γ neutralization protected them from blood-brain barrier disruption, cerebrovascular rarefaction, and cognitive decline. CONCLUSIONS: These findings uncover cellular and molecular players of an immune pathway communicating hypertensive stimulus to structural and functional remodelling of the brain and identify anti-interferon-γ treatment as a promising intervention strategy capable of preventing pressure overload-induced damage of the cerebrovascular and nervous systems.


Asunto(s)
Disfunción Cognitiva , Hipertensión , Ratones , Animales , Pez Cebra/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Interferón gamma/metabolismo
6.
STAR Protoc ; 3(4): 101731, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36183255

RESUMEN

The larval zebrafish has emerged as a very useful model organism to study the neuronal circuits controlling neuroendocrine and behavioral responses to stress. This protocol describes how to expose zebrafish larvae to hyperosmotic stress and test whether candidate populations of neurons are activated or inhibited by the stressor using a relatively rapid immunofluorescence staining approach. This approach takes advantage of the phosphorylation of the extracellular signal-regulated kinase (ERK) upon neuronal activation. For complete details on the use and execution of this protocol, please refer to Corradi et al. (2022).


Asunto(s)
Neuronas , Pez Cebra , Animales , Pez Cebra/fisiología , Larva , Fosforilación
7.
Curr Biol ; 32(7): 1497-1510.e5, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35219430

RESUMEN

Animals possess neuronal circuits inducing stress to avoid or cope with threats present in their surroundings, for instance, by promoting behaviors, such as avoidance and escape. However, mechanisms must exist to tightly control responses to stressors, since overactivation of stress circuits is deleterious for the wellbeing of an organism. The underlying neuronal dynamics responsible for controlling behavioral responses to stress have remained unclear. Here, we describe a neuronal circuit in the hypothalamus of zebrafish larvae that inhibits stress-related behaviors and prevents excessive activation of the neuroendocrine pathway hypothalamic-pituitary-interrenal axis. Central components of this circuit are neurons secreting the neuropeptide Galanin, as ablation of these neurons led to abnormally high levels of stress. Surprisingly, we found that Galanin has a self-inhibitory action on Galanin-producing neurons. Our results suggest that hypothalamic Galanin-producing neurons play an important role in fine-tuning stress responses by preventing potentially harmful overactivation of stress-regulating circuits.


Asunto(s)
Galanina , Hormonas Peptídicas , Animales , Galanina/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Hormonas Peptídicas/metabolismo , Pez Cebra/metabolismo
8.
Front Mol Neurosci ; 14: 718951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335183

RESUMEN

Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.

9.
Cell Rep ; 33(7): 108404, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207196

RESUMEN

Stressful experiences early in life can increase the risk of cardiovascular diseases. However, it remains largely unknown how stress influences susceptibility to the disease onset. Here, we show that exposure to brain-processed stress disrupts myocardial growth by reducing cardiomyocyte mitotic activity. Activation of the glucocorticoid receptor (GR), the primary stress response pathway, reduces cardiomyocyte numbers, disrupts trabecular formation, and leads to contractile dysfunction of the developing myocardium. However, a physiological level of GR signaling is required to prevent cardiomyocyte hyperproliferation. Mechanistically, we identify an antagonistic interaction between the GR and the cytokine interleukin-4 (IL-4) as a key player in cardiac development. IL-4 signals transcription of key regulators of cell-cycle progression in cardiomyocytes via signal transducer and activator of transcription 3 (Stat3). GR, on the contrary, inhibits this signaling system. Thus, our findings uncover an interplay between stress and immune signaling pathways critical to orchestrating physiological growth of the heart.


Asunto(s)
Interleucina-4 , Miocitos Cardíacos , Receptores de Glucocorticoides , Estrés Fisiológico , Animales , Femenino , Masculino , Ratones , Glucocorticoides/metabolismo , Interleucina-4/inmunología , Interleucina-4/metabolismo , Interleucina-4/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitosis , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Receptores de Glucocorticoides/inmunología , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción STAT3/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
PLoS Genet ; 14(12): e1007845, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30543681

RESUMEN

Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS.


Asunto(s)
Artrogriposis/genética , Genes Letales , Mutación , Proteínas de Complejo Poro Nuclear/genética , Alelos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Artrogriposis/embriología , Artrogriposis/fisiopatología , Consanguinidad , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Proteínas Musculares/metabolismo , Unión Neuromuscular/fisiopatología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/deficiencia , Linaje , Embarazo , Conformación Proteica , Receptores Nicotínicos/metabolismo , Homología de Secuencia de Aminoácido , Pez Cebra/anomalías , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
11.
Nat Commun ; 8(1): 1525, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142194

RESUMEN

Cells can sacrifice their individuality by fusing, but the prevalence and significance of this process are poorly understood. To approach these questions, here we generate transgenic reporter lines in zebrafish to label and specifically ablate fused cells. In addition to skeletal muscle cells, the reporters label cardiomyocytes starting at an early developmental stage. Genetic mosaics generated by cell transplantation show cardiomyocytes expressing both donor- and host-derived transgenes, confirming the occurrence of fusion in larval hearts. These fusion events are transient and do not generate multinucleated cardiomyocytes. Functionally, cardiomyocyte fusion correlates with their mitotic activity during development as well as during regeneration in adult animals. By analyzing the cell fusion-compromised jam3b mutants, we propose a role for membrane fusion in cardiomyocyte proliferation and cardiac function. Together, our findings uncover the previously unrecognized process of transient cardiomyocyte fusion and identify its potential role in cardiac development and function.


Asunto(s)
Fusión Celular , Regulación del Desarrollo de la Expresión Génica , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Proliferación Celular/genética , Corazón/embriología , Corazón/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Miocardio/citología , Miocitos Cardíacos/citología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Sci Rep ; 7(1): 5230, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701772

RESUMEN

Genetic access to small, reproducible sets of neurons is key to an understanding of the functional wiring of the brain. Here we report the generation of a new Gal4- and Cre-driver resource for zebrafish neurobiology. Candidate genes, including cell type-specific transcription factors, neurotransmitter-synthesizing enzymes and neuropeptides, were selected according to their expression patterns in small and unique subsets of neurons from diverse brain regions. BAC recombineering, followed by Tol2 transgenesis, was used to generate driver lines that label neuronal populations in patterns that, to a large but variable extent, recapitulate the endogenous gene expression. We used image registration to characterize, compare, and digitally superimpose the labeling patterns from our newly generated transgenic lines. This analysis revealed highly restricted and mutually exclusive tissue distributions, with striking resolution of layered brain regions such as the tectum or the rhombencephalon. We further show that a combination of Gal4 and Cre transgenes allows intersectional expression of a fluorescent reporter in regions where the expression of the two drivers overlaps. Taken together, our study offers new tools for functional studies of specific neural circuits in zebrafish.


Asunto(s)
Encéfalo/fisiología , Cromosomas Artificiales Bacterianos , Marcación de Gen , Neuronas/fisiología , Transgenes , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
13.
Neuron ; 90(3): 596-608, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27146269

RESUMEN

Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions.


Asunto(s)
Conducta Animal/fisiología , Conducta de Elección/fisiología , Neuronas/metabolismo , Conducta Predatoria/fisiología , Vías Visuales/fisiología , Pez Cebra/fisiología , Animales , Hambre/fisiología , Larva/fisiología , Visión Ocular/fisiología
14.
J Neurosci ; 33(11): 5027-39, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23486973

RESUMEN

The axons of retinal ganglion cells (RGCs) form topographic connections in the optic tectum, recreating a two-dimensional map of the visual field in the midbrain. RGC axons are also targeted to specific positions along the laminar axis of the tectum. Understanding the sensory transformations performed by the tectum requires identification of the rules that control the formation of synaptic laminae by RGC axons. However, there is little information regarding the spatial relationships between multiple axons as they establish laminar and retinotopic arborization fields within the same region of neuropil. Moreover, the contribution of RGC axon lamination to the processing of visual information is unknown. We used Brainbow genetic labeling to visualize groups of individually identifiable axons during the assembly of a precise laminar map in the larval zebrafish tectum. Live imaging of multiple RGCs revealed that axons target specific sublaminar positions during initial innervation and maintain their relative laminar positions throughout early larval development, ruling out a model for lamina selection based on iterative refinements. During this period of laminar stability, RGC arbors undergo structural rearrangements that shift their relative retinotopic positions. Analysis of cell-type-specific lamination patterns revealed that distinct combinations of RGCs converge to form each sublamina, and this input heterogeneity correlates with different functional responses to visual stimuli. These findings suggest that lamina-specific sorting of retinal inputs provides an anatomical blueprint for the integration of visual features in the tectum.


Asunto(s)
Axones/fisiología , Retina/citología , Células Ganglionares de la Retina/citología , Colículos Superiores/fisiología , Vías Visuales/fisiología , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas con Homeodominio LIM/metabolismo , Larva , Método de Montecarlo , Dinámicas no Lineales , Estimulación Luminosa , Retina/anatomía & histología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
J Neurosci ; 32(40): 13819-40, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035093

RESUMEN

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.


Asunto(s)
Señalización del Calcio , Colorantes Fluorescentes/química , Fluorometría/métodos , Proteínas Fluorescentes Verdes/química , Neuroimagen/métodos , Neuronas/química , Péptidos/química , Transmisión Sináptica , Animales , Astrocitos/química , Astrocitos/ultraestructura , Caenorhabditis elegans , Cristalografía por Rayos X , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Colorantes Fluorescentes/análisis , Genes Sintéticos , Vectores Genéticos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Células HEK293/química , Células HEK293/ultraestructura , Hipocampo/química , Hipocampo/citología , Humanos , Larva , Rayos Láser , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Neuromuscular/química , Unión Neuromuscular/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Neurópilo/química , Neurópilo/fisiología , Neurópilo/ultraestructura , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Péptidos/análisis , Péptidos/genética , Estimulación Luminosa , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Células Bipolares de la Retina/química , Células Bipolares de la Retina/fisiología , Células Bipolares de la Retina/ultraestructura , Pez Cebra/crecimiento & desarrollo
16.
Nat Neurosci ; 12(10): 1285-92, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19734893

RESUMEN

Astrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3-CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes. Lack of EphA4 increased the abundance of glial glutamate transporters, and ephrin-A3 modulated transporter currents in astrocytes. Pharmacological inhibition of glial glutamate transporters rescued the LTP defects in EphA4 (Epha4) and ephrin-A3 (Efna3) mutant mice. Transgenic overexpression of ephrin-A3 in astrocytes reduces glutamate transporter levels and produces focal dendritic swellings possibly caused by glutamate excitotoxicity. These results suggest that EphA4/ephrin-A3 signaling is a critical mechanism for astrocytes to regulate synaptic function and plasticity.


Asunto(s)
Efrina-A3/metabolismo , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Receptor EphA4/metabolismo , Animales , Animales Recién Nacidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Biofisica , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Efrina-A3/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp/métodos , Pentilenotetrazol , Receptor EphA4/deficiencia , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología , Transducción de Señal/fisiología , Sinapsis/fisiología , Regulación hacia Arriba/genética
17.
Neuron ; 55(5): 756-67, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17785182

RESUMEN

Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Central/anomalías , Sistema Nervioso Central/metabolismo , Quimerina 1/metabolismo , Conos de Crecimiento/metabolismo , Receptor EphA4/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/anomalías , Encéfalo/metabolismo , Encéfalo/fisiopatología , Comunicación Celular/genética , Células Cultivadas , Sistema Nervioso Central/citología , Quimerina 1/genética , Regulación hacia Abajo/genética , Trastornos Neurológicos de la Marcha/genética , Trastornos Neurológicos de la Marcha/metabolismo , Trastornos Neurológicos de la Marcha/fisiopatología , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/ultraestructura , Ratones , Ratones Noqueados , Vías Nerviosas/anomalías , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Unión Proteica/genética , Tractos Piramidales/anomalías , Tractos Piramidales/metabolismo , Tractos Piramidales/fisiopatología , Transducción de Señal/genética , Médula Espinal/anomalías , Médula Espinal/citología , Médula Espinal/metabolismo
18.
Development ; 133(21): 4151-62, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17021036

RESUMEN

The transcription factor COUP-TFI (NR2F1), an orphan member of the nuclear receptor superfamily, is an important regulator of neurogenesis, cellular differentiation and cell migration. In the forebrain, COUP-TFI controls the connectivity between thalamus and cortex and neuronal tangential migration in the basal telencephalon. Here, we show that COUP-TFI is required for proper axonal growth and guidance of all major forebrain commissures. Fibres of the corpus callosum, the hippocampal commissure and the anterior commissure project aberrantly and fail to cross the midline in COUP-TFI null mutants. Moreover, hippocampal neurons lacking COUP-TFI have a defect in neurite outgrowth and show an abnormal axonal morphology. To search for downstream effectors, we used microarray analysis and showed that, in the absence of COUP-TFI, expression of various cytoskeleton molecules involved in neuronal morphogenesis is affected. Diminished protein levels of the microtubule-associated protein MAP1B and increased levels of the GTP-binding protein RND2 were confirmed in the developing cortex in vivo and in primary hippocampal neurons in vitro. Therefore, based on morphological studies, gene expression profiling and primary cultured neurons, the present data uncover a previously unappreciated intrinsic role for COUP-TFI in axonal growth in vivo and supply one of the premises for COUP-TFI coordination of neuronal morphogenesis in the developing forebrain.


Asunto(s)
Axones/fisiología , Factor de Transcripción COUP I/metabolismo , Vías Nerviosas/fisiología , Prosencéfalo , Agenesia del Cuerpo Calloso , Animales , Axones/ultraestructura , Factor de Transcripción COUP I/genética , Forma de la Célula , Células Cultivadas , Cuerpo Calloso/anatomía & histología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Hipocampo/anomalías , Hipocampo/anatomía & histología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Morfogénesis , Vías Nerviosas/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Prosencéfalo/anatomía & histología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
19.
Brain Res Bull ; 66(4-6): 394-401, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16144621

RESUMEN

The cellular diversity of neurons located in the marginal zone (MZ) of the cortex has a crucial role in cortical development. However, little is known about the molecular mechanisms involved in how these different neuronal cell types are specified. Here, we show that in the MZ, the nuclear receptor COUP-TFI is localized in calbindin-positive cells and not in reelin-positive cells. High expression of COUP-TFI has been detected in preplate (PP) and subplate (SP) cells, suggesting that this nuclear receptor is down-regulated during preplate differentiation towards the Cajal-Retzius (CR) cell lineage. By maintaining high ectopic expression of COUP-TFI in preplate cells, we show that COUP-TFI represses the CR cell markers reelin and calretinin, and with lower efficiency the transcription factor Tbr1. Furthermore, general differentiation is not affected, strongly suggesting that COUP-TFI represses differentiation of CR cells.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/citología , Neuronas/fisiología , Animales , Calbindina 2 , Calbindinas , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas de Unión al ADN/metabolismo , Electroporación/métodos , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Inmunohistoquímica/métodos , Técnicas In Vitro , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Proteína Reelina , Proteína G de Unión al Calcio S100/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas de Dominio T Box , Tubulina (Proteína)/metabolismo
20.
Development ; 131(24): 6119-29, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15548577

RESUMEN

Cells migrate via diverse pathways and in different modes to reach their final destinations during development. Tangential migration has been shown to contribute significantly to the generation of neuronal diversity in the mammalian telencephalon. GABAergic interneurons are the best-characterized neurons that migrate tangentially, from the ventral telencephalon, dorsally into the cortex. However, the molecular mechanisms and nature of these migratory pathways are only just beginning to be unravelled. In this study we have first identified a novel dorsal-to-ventral migratory route, in which cells migrate from the interganglionic sulcus, located in the basal telencephalon between the lateral and medial ganglionic eminences, towards the pre-optic area and anterior hypothalamus in the diencephalon. Next, with the help of transplantations and gain-of-function studies in organotypic cultures, we have shown that COUP-TFI and COUP-TFII are expressed in distinct and non-overlapping migratory routes. Ectopic expression of COUP-TFs induces an increased rate of cell migration and cell dispersal, suggesting roles in cellular adhesion and migration processes. Moreover, cells follow a distinct migratory path, dorsal versus ventral, which is dependent on the expression of COUP-TFI or COUP-TFII, suggesting an intrinsic role of COUP-TFs in guiding migrating neurons towards their target regions. Therefore, we propose that COUP-TFs are directly involved in tangential cell migration in the developing brain, through the regulation of short- and long-range guidance cues.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Neuronas/citología , Receptores de Esteroides/metabolismo , Telencéfalo/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Factor de Transcripción COUP II , Factores de Transcripción COUP , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Receptores Citoplasmáticos y Nucleares/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...