Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Plant Sci ; 15: 1345462, 2024.
Article En | MEDLINE | ID: mdl-38371407

This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.

2.
Plant Physiol Biochem ; 205: 108155, 2023 Dec.
Article En | MEDLINE | ID: mdl-37952365

Minimizing the impact of heat and drought on crop yields requires varieties with effective protective mechanisms. We tested the hypothesis that even a short-term high temperature amplifies the negative effects of reduced water availability on leaf gas-exchange, but can induce long-lasting improvement in plant water-use efficiency after the stress period. Accordingly, three common varieties of winter wheat (Triticum aestivum) were grown under field conditions. During the stem extension, the plants were exposed to distinct temperatures (daily maximum 26 vs. 38 °C), water availabilities (75% of field water capacity vs. permanent wilting point), and their combination for 14 days. All treatments reduced light-saturated rates of CO2 assimilation and transpiration, particularly when heat and drought were combined. Drought enhanced water-use efficiency (WUE) in all varieties (31.4-36.4%), but not at high temperatures (decrease by 17-52%). Intrinsic WUE (iWUE), determined from the stable carbon isotope composition of grains, was enhanced by 7.9-37% in all treatments and varieties; however, not all changes were significant. The combination of heat and drought tended to increase total protein content in grains but reduced spike productivity. Noticeably, the strongest decline in spike productivity was observed in Elan - the variety displaying the smallest enhancement of iWUE, while it was negligible in Pannonia which shows the most pronounced improvement of iWUE. We conclude that even several hot and dry days can improve iWUE for the rest of the vegetation season. This improvement, however, does not necessarily lead to increased crop productivity possibly due to physiological trade-offs.


Triticum , Water , Water/metabolism , Triticum/metabolism , Temperature , Carbon Isotopes , Droughts , Edible Grain/metabolism
3.
Front Plant Sci ; 13: 1002561, 2022.
Article En | MEDLINE | ID: mdl-36299781

One of the key challenges linked with future food and nutritional security is to evaluate the interactive effect of climate variables on plants' growth, fitness, and yield parameters. These interactions may lead to unique shifts in the morphological, physiological, gene expression, or metabolite accumulation patterns, leading to an adaptation response that is specific to future climate scenarios. To understand such changes, we exposed spring wheat to 7 regimes (3 single and 4 combined climate treatments) composed of elevated temperature, the enhanced concentration of CO2, and progressive drought stress corresponding to the predicted climate of the year 2100. The physiological and metabolic responses were then compared with the current climate represented by the year 2020. We found that the elevated CO2 (eC) mitigated some of the effects of elevated temperature (eT) on physiological performance and metabolism. The metabolite profiling of leaves revealed 44 key metabolites, including saccharides, amino acids, and phenolics, accumulating contrastingly under individual regimes. These metabolites belong to the central metabolic pathways that are essential for cellular energy, production of biosynthetic pathways precursors, and oxidative balance. The interaction of eC alleviated the negative effect of eT possibly by maintaining the rate of carbon fixation and accumulation of key metabolites and intermediates linked with the Krebs cycle and synthesis of phenolics. Our study for the first time revealed the influence of a specific climate factor on the accumulation of metabolic compounds in wheat. The current work could assist in the understanding and development of climate resilient wheat by utilizing the identified metabolites as breeding targets for food and nutritional security.

...