Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 46(4): 571-582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38758336

RESUMEN

PURPOSE: Simultaneous membrane-based feeding and monitoring of the oxygen transfer rate shall be introduced to the newly established perforated ring flask, which consists of a cylindrical glass flask with an additional perforated inner glass ring, for rapid bioprocess development. METHODS: A 3D-printed adapter was constructed to enable monitoring of the oxygen transfer rate in the perforated ring flasks. Escherichia coli experiments in batch were performed to validate the adapter. Fed-batch experiments with different diffusion rates and feed solutions were performed. RESULTS: The adapter and the performed experiments allowed a direct comparison of the perforated ring flasks with Erlenmeyer flasks. In batch cultivations, maximum oxygen transfer capacities of 80 mmol L-1 h-1 were reached with perforated ring flasks, corresponding to a 3.5 times higher capacity than in Erlenmeyer flasks. Fed-batch experiments with a feed reservoir concentration of 500 g glucose L-1 were successfully conducted. Based on the oxygen transfer rate, an ammonium limitation could be observed. By adding 40 g ammonium sulfate L-1 to the feed reservoir, the limitation could be prevented. CONCLUSION: The membrane-based feeding, an online monitoring technique, and the perforated ring flask were successfully combined and offer a new and promising tool for screening and process development in biotechnology.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Escherichia coli , Fermentación , Oxígeno , Escherichia coli/metabolismo , Oxígeno/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Glucosa/metabolismo , Difusión , Impresión Tridimensional
2.
BMC Microbiol ; 23(1): 391, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062358

RESUMEN

BACKGROUND: The promising yet barely investigated anaerobic species Phocaeicola vulgatus (formerly Bacteroides vulgatus) plays a vital role for human gut health and effectively produces organic acids. Among them is succinate, a building block for high-value-added chemicals. Cultivating anaerobic bacteria is challenging, and a detailed understanding of P. vulgatus growth and metabolism is required to improve succinate production. One significant aspect is the influence of different gas concentrations. CO2 is required for the growth of P. vulgatus. However, it is a greenhouse gas that should not be wasted. Another highly interesting aspect is the sensitivity of P. vulgatus towards O2. In this work, the effects of varying concentrations of both gases were studied in the in-house developed Respiratory Activity MOnitoring System (RAMOS), which provides online monitoring of CO2, O2, and pressure under gassed conditions. The RAMOS was combined with a gas mixing system to test CO2 and O2 concentrations in a range of 0.25-15.0 vol% and 0.0-2.5 vol%, respectively. RESULTS: Changing the CO2 concentration in the gas supply revealed a CO2 optimum of 3.0 vol% for total organic acid production and 15.0 vol% for succinate production. It was demonstrated that the organic acid composition changed depending on the CO2 concentration. Furthermore, unrestricted growth of P. vulgatus up to an O2 concentration of 0.7 vol% in the gas supply was proven. The viability decreased rapidly at concentrations larger than or equal to 1.3 vol% O2. CONCLUSIONS: The study showed that P. vulgatus requires little CO2, has a distinct O2 tolerance and is therefore well suited for industrial applications.


Asunto(s)
Bacteroides , Dióxido de Carbono , Humanos , Dióxido de Carbono/metabolismo , Succinatos , Ácido Succínico , Oxígeno/metabolismo
3.
Biotechnol Biofuels Bioprod ; 16(1): 181, 2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38008736

RESUMEN

BACKGROUND: Reducing the costs of biorefinery processes is a crucial step in replacing petrochemical products by sustainable, biotechnological alternatives. Substrate costs and downstream processing present large potential for improvement of cost efficiency. The implementation of in situ adsorption as an energy-efficient product recovery method can reduce costs in both areas. While selective product separation is possible at ambient conditions, yield-limiting effects, as for example product inhibition, can be reduced in an integrated process. RESULTS: An in situ adsorption process was integrated into the production of itaconic acid with Ustilago cynodontis IAmax, as an example of a promising biorefinery process. A suitable feed strategy was developed to enable efficient production and selective recovery of itaconic acid by maintaining optimal glucose concentrations. Online monitoring via Raman spectroscopy was implemented to enable a first process control and understand the interactions of metabolites with the adsorbent. In the final, integrated bioprocess, yield, titre, and space-time yield of the fermentation process were increased to values of 0.41 gIA/gGlucose, 126.5 gIA/L and 0.52 gIA/L/h. This corresponds to an increase of up to 30% in comparison to the first extended batch experiment without in situ product removal. Itaconic acid was recovered with a purity of at least 95% and high concentrations above 300 g/L in the eluate. CONCLUSION: Integration of product separation via adsorption into the bioprocess was successfully conducted and improved the efficiency of itaconic acid production. Raman spectroscopy was proven to be a reliable tool for online monitoring of various metabolites and facilitated design and validation of the complex separation and feed process. The general process concept can be transferred to the production of various similar bioproducts, expanding the tool kit for design of innovative biorefinery processes.

4.
Sci Total Environ ; 905: 167035, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709100

RESUMEN

The Ames test is one of the most applied tools in mutagenicity testing of chemicals ever since its introduction by Ames et al. in the 1970s. Its principle is based on histidine auxotrophic bacteria that regain prototrophy through reverse mutations. In the presence of a mutagen, more reverse mutations occur that become visible as increased bacterial growth on medium without histidine. Many miniaturized formats of the Ames test have emerged to enable the testing of environmental water samples, increase experimental throughput, and lower the required amounts of test substances. However, most of these formats still rely on endpoint determinations. In contrast, the recently introduced Ames RAMOS test determines mutagenicity through online monitoring of the oxygen transfer rate. In this study, the oxygen transfer rate of Salmonella typhimurium TA100 during the Ames plate incorporation test was monitored and compared to the Ames RAMOS test to prove its validity further. Furthermore, the Ames RAMOS test in 96-well scale is newly introduced. For both the Ames plate incorporation and the Ames RAMOS test, the influence of the inoculum cell count on the negative control was highlighted: A lower inoculum cell count led to a higher coefficient of variation. However, a lower inoculum cell count also led to a higher separation efficiency in the Ames RAMOS test and, thus, to better detection of a mutagenic substance at lower concentrations.


Asunto(s)
Histidina , Salmonella typhimurium , Histidina/genética , Salmonella typhimurium/genética , Mutágenos/toxicidad , Mutágenos/química , Mutación , Pruebas de Mutagenicidad , Oxígeno
5.
Biotechnol Bioeng ; 120(8): 2199-2213, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462090

RESUMEN

H2 -producing microorganisms are a promising source of sustainable biohydrogen. However, most H2 -producing microorganisms are anaerobes, which are difficult to cultivate and characterize. While several methods for measuring H2 exist, common H2 sensors often require oxygen, making them unsuitable for anaerobic processes. Other sensors can often not be operated at high gas humidity. Thus, we applied thermal conductivity (TC) sensors and developed a parallelized, online H2 monitoring for time-efficient characterization of H2 production by anaerobes. Since TC sensors are nonspecific for H2 , the cross-sensitivity of the sensors was evaluated regarding temperature, gas humidity, and CO2 concentrations. The systems' measurement range was validated with two anaerobes: a high H2 -producer (Clostridium pasteurianum) and a low H2 -producer (Phocaeicola vulgatus). Online monitoring of H2 production in shake flask cultivations was demonstrated, and H2 transfer rates were derived. Combined with online CO2 and pressure measurements, molar gas balances of the cultivations were closed, and an anaerobic respiration quotient was calculated. Thus, insight into the effect of medium components and inhibitory cultivation conditions on H2 production with the model anaerobes was gained. The presented online H2 monitoring method can accelerate the characterization of anaerobes for biohydrogen production and reveal metabolic changes without expensive equipment and offline analysis.


Asunto(s)
Dióxido de Carbono , Hidrógeno , Fermentación , Anaerobiosis , Hidrógeno/metabolismo , Conductividad Térmica , Bacterias Anaerobias/metabolismo
6.
Biotechnol Bioeng ; 120(10): 2925-2939, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37350126

RESUMEN

Online fluorescence monitoring has become a key technology in modern bioprocess development, as it provides in-depth process knowledge at comparably low costs. In particular, the technology is widely established for high-throughput microbioreactor cultivation systems, due to its noninvasive character. For microtiter plates, previously also multi-wavelength 2D fluorescence monitoring was developed. To overcome an observed limitation of fluorescence sensitivity, this study presents a modified spectroscopic setup, including a tunable emission monochromator. The new optical component enables the separation of the scattered and fluorescent light measurements, which allows for the adjustment of integration times of the charge-coupled device detector. The resulting increased fluorescence sensitivity positively affected the performance of principal component analysis for spectral data of Escherichia coli batch cultivation experiments with varying sorbitol concentration supplementation. In direct comparison with spectral data recorded at short integration times, more biologically consistent signal dynamics were calculated. Furthermore, during partial least square regression for E. coli cultivation experiments with varying glucose concentrations, improved modeling performance was observed. Especially, for the growth-uncoupled acetate concentration, a considerable improvement of the root-mean-square error from 0.25 to 0.17 g/L was achieved. In conclusion, the modified setup represents another important step in advancing 2D fluorescence monitoring in microtiter plates.


Asunto(s)
Reactores Biológicos , Escherichia coli , Fluorescencia , Tecnología
7.
Biotechnol J ; 18(8): e2200627, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183352

RESUMEN

Cultivating microorganisms on solid agar media is a fundamental technique in microbiology and other related disciplines. For the evaluation, most often, a subjective visual examination is performed. Crucial information, such as metabolic activity, is not assessed. Thus, time-resolved monitoring of the respiration activity in agar cultivations is presented to provide additional insightful data on the metabolism. A modified version of the Respiration Activity MOnitoring System (RAMOS) was used to determine area-specific oxygen and carbon dioxide transfer rates and the resulting respiratory quotients of agar cultivations. Therewith, information on growth, substrate consumption, and product formation was obtained. The validity of the presented method was tested for different prokaryotic and eukaryotic organisms on agar, such as Escherichia coli BL21, Pseudomonas putida KT2440, Streptomyces coelicolor A3(2), Saccharomyces cerevisiae WT, Pichia pastoris WT, and Trichoderma reesei RUT-C30. Furthermore, it is showcased that several potential applications, including the determination of colony forming units, antibiotic diffusion tests, quality control for spore production or for pre-cultures and media optimization, can be quantitatively evaluated by interpretation of the respiration activity.


Asunto(s)
Respiración , Saccharomyces cerevisiae , Agar/metabolismo , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo/metabolismo
8.
Biotechnol Bioeng ; 120(5): 1288-1302, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740737

RESUMEN

Knowledge about the specific affinity of whole cells toward a substrate, commonly referred to as kS , is a crucial parameter for characterizing growth within bioreactors. State-of-the-art methodologies measure either uptake or consumption rates at different initial substrate concentrations. Alternatively, cell dry weight or respiratory data like online oxygen and carbon dioxide transfer rates can be used to estimate kS . In this work, a recently developed substrate-limited microfluidic single-cell cultivation (sl-MSCC) method is applied for the estimation of kS values under defined environmental conditions. This method is benchmarked with two alternative microtiter plate methods, namely high-frequency biomass measurement (HFB) and substrate-limited respiratory activity monitoring (sl-RA). As a model system, the substrate affinity kS of Corynebacterium glutamicum ATCC 13032 regarding glucose was investigated assuming a Monod-type growth response. A kS of <70.7 mg/L (with 95% probability) with HFB, 8.55 ± 1.38 mg/L with sl-RA, and 2.66 ± 0.99 mg/L with sl-MSCC was obtained. Whereas HFB and sl-RA are suitable for a fast initial kS estimation, sl-MSCC allows an affinity estimation by determining tD at concentrations less or equal to the kS value. Thus, sl-MSCC lays the foundation for strain-specific kS estimations under defined environmental conditions with additional insights into cell-to-cell heterogeneity.


Asunto(s)
Corynebacterium glutamicum , Microfluídica , Reactores Biológicos/microbiología , Oxígeno , Dióxido de Carbono
9.
Eng Life Sci ; 23(1): e2100151, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36619878

RESUMEN

Streptomyces species are intensively studied for their ability to produce a variety of natural products. However, conditions influencing and leading to product formation are often not completely recognized. Therefore, in this study, high-throughput online monitoring is presented as a powerful tool to gain in-depth understanding of the cultivation of the model organism Streptomyces coelicolor A3(2). Through online measurements of oxygen transfer rate and autofluorescence, valuable information about availability of nutrients and product formation patterns of the pigments actinorhodin and undecylprodigiosin can be obtained and explained. Therefore, it is possible to determine the onset of pigmentation and to study in detail the influencing factors thereof. One factor identified in this study is the filling volume of the cultivation vessel. Slight variations led to varying pigmentation levels. By combining optical and metabolic online monitoring techniques, the correlation of the filling volume with pigmentation could be explained as a result of different growth trajectories caused by varying specific power inputs and their influence on the pellet formation of the filamentous system. Finally, experiments with the addition of supernatant from unpigmented and pigmented cultures could highlight the applicability of the presented approach to study quorum sensing and cell-cell interaction.

10.
Microbiologyopen ; 11(5): e1324, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36314761

RESUMEN

Microbial cocultures are used as a tool to stimulate natural product biosynthesis. However, studies often empirically combine different organisms without a deeper understanding of the population dynamics. As filamentous organisms offer a vast metabolic diversity, we developed a model filamentous coculture of the cellulolytic fungus Trichoderma reesei RUT-C30 and the noncellulolytic bacterium Streptomyces coelicolor A3(2). The coculture was set up to use α-cellulose as a carbon source. This established a dependency of S. coelicolor on hydrolysate sugars released by T. reesei cellulases. To provide detailed insight into coculture dynamics, we applied high-throughput online monitoring of the respiration rate and fluorescence of the tagged strains. The respiration rate allowed us to distinguish the conditions of successful cellulase formation. Furthermore, to dissect the individual strain contributions, T. reesei and S. coelicolor were tagged with mCherry and mNeonGreen (mNG) fluorescence proteins, respectively. When evaluating varying inoculation ratios, it was observed that both partners outcompete the other when given a high inoculation advantage. Nonetheless, adequate proportions for simultaneous growth of both partners, cellulase, and pigment production could be determined. Finally, population dynamics were also tuned by modulating abiotic factors. Increased osmolality provided a growth advantage to S. coelicolor. In contrast, an increase in shaking frequency had a negative effect on S. coelicolor biomass formation, promoting T. reesei. This comprehensive analysis fills important knowledge gaps in the control of complex cocultures and accelerates the setup of other tailor-made coculture bioprocesses.


Asunto(s)
Celulasa , Trichoderma , Celulasa/metabolismo , Técnicas de Cocultivo , Celulosa/metabolismo , Dinámica Poblacional
11.
Metab Eng Commun ; 15: e00205, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36119807

RESUMEN

Microbial synthesis of monolignols and lignans from simple substrates is a promising alternative to plant extraction. Bottlenecks and byproduct formation during heterologous production require targeted metabolomics tools for pathway optimization. In contrast to available fractional methods, we established a comprehensive targeted metabolomics method. It enables the quantification of 17 extra- and intracellular metabolites of the monolignol and lignan pathway, ranging from amino acids to pluviatolide. Several cell disruption methods were compared. Hot water extraction was best suited regarding monolignol and lignan stability as well as extraction efficacy. The method was applied to compare enzymes for alleviating bottlenecks during heterologous monolignol and lignan production in E. coli. Variants of tyrosine ammonia-lyase had a considerable influence on titers of subsequent metabolites. The choice of multicopper oxidase greatly affected the accumulation of lignans. Metabolite titers were monitored during batch fermentation of either monolignol or lignan-producing recombinant E. coli strains, demonstrating the dynamic accumulation of metabolites. The new method enables efficient time-resolved targeted metabolomics of monolignol- and lignan-producing E. coli. It facilitates bottleneck identification and byproduct quantification, making it a valuable tool for further pathway engineering studies. This method will benefit the bioprocess development of biotransformation or fermentation approaches for microbial lignan production.

12.
Bioengineering (Basel) ; 9(9)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134983

RESUMEN

Multi-wavelength (2D) fluorescence spectroscopy represents an important step towards exploiting the monitoring potential of microtiter plates (MTPs) during early-stage bioprocess development. In combination with multivariate data analysis (MVDA), important process information can be obtained, while repetitive, cost-intensive sample analytics can be reduced. This study provides a comprehensive experimental dataset of online and offline measurements for batch cultures of Hansenula polymorpha. In the first step, principal component analysis (PCA) was used to assess spectral data quality. Secondly, partial least-squares (PLS) regression models were generated, based on spectral data of two cultivation conditions and offline samples for glycerol, cell dry weight, and pH value. Thereby, the time-wise resolution increased 12-fold compared to the offline sampling interval of 6 h. The PLS models were validated using offline samples of a shorter sampling interval. Very good model transferability was shown during the PLS model application to the spectral data of cultures with six varying initial cultivation conditions. For all the predicted variables, a relative root-mean-square error (RMSE) below 6% was obtained. Based on the findings, the initial experimental strategy was re-evaluated and a more practical approach with minimised sampling effort and elevated experimental throughput was proposed. In conclusion, the study underlines the high potential of multi-wavelength (2D) fluorescence spectroscopy and provides an evaluation workflow for PLS modelling in microtiter plates.

13.
Microb Biotechnol ; 15(11): 2773-2785, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35972427

RESUMEN

Understanding population dynamics is a key factor for optimizing co-culture processes to produce valuable compounds. However, the measurement of independent population dynamics is difficult, especially for filamentous organisms and in presence of insoluble substrates like cellulose. We propose a workflow for fluorescence-based online monitoring of individual population dynamics of two filamentous microorganisms. The fluorescent tagged target co-culture is composed of the cellulolytic fungus Trichoderma reesei RUT-C30-mCherry and the pigment-producing bacterium Streptomyces coelicolor A3(2)-mNeonGreen (mNG) growing on insoluble cellulose as a substrate. To validate the system, the fluorescence-to-biomass and fluorescence-to-scattered-light correlation of the two strains was characterized in depth under various conditions. Thereby, especially for complex filamentous microorganisms, microbial morphologies have to be considered. Another bias can arise from autofluorescence or pigments that can spectrally interfere with the fluorescence measurement. Green autofluorescence of both strains was uncoupled from different green fluorescent protein signals through a spectral unmixing approach, resulting in a specific signal only linked to the abundance of S. coelicolor A3(2)-mNG. As proof of principle, the population dynamics of the target co-culture were measured at varying inoculation ratios in presence of insoluble cellulose particles. Thereby, the respective fluorescence signals reliably described the abundance of each partner, according to the variations in the inocula. With this method, conditions can be fine-tuned for optimal growth of both partners along with natural product formation by the bacterium.


Asunto(s)
Trichoderma , Trichoderma/metabolismo , Técnicas de Cocultivo , Celulosa/metabolismo , Biomasa , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...