Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 72: 103138, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581858

RESUMEN

The oxytosis/ferroptosis regulated cell death pathway is an emerging field of research owing to its pathophysiological relevance to a wide range of neurological disorders, including Alzheimer's and Parkinson's diseases and traumatic brain injury. Developing novel neurotherapeutics to inhibit oxytosis/ferroptosis offers exciting opportunities for the treatment of these and other neurological diseases. Previously, we discovered cannabinol (CBN) as a unique, potent inhibitor of oxytosis/ferroptosis by targeting mitochondria and modulating their function in neuronal cells. To further elucidate which key pharmacophores and chemical space are essential to the beneficial effects of CBN, we herein introduce a fragment-based drug discovery strategy in conjunction with cell-based phenotypic screens using oxytosis/ferroptosis to determine the structure-activity relationship of CBN. The resulting information led to the development of four new CBN analogs, CP1-CP4, that not only preserve the sub-micromolar potency of neuroprotection and mitochondria-modulating activities seen with CBN in neuronal cell models but also have better druglike properties. Moreover, compared to CBN, the analog CP1 shows improved in vivo efficacy in the Drosophila model of mild traumatic brain injury. Together these studies identify the key molecular scaffolds of cannabinoids that contribute to neuroprotection against oxytosis/ferroptosis. They also highlight the advantageous approach of combining in vitro cell-based assays and rapid in vivo studies using Drosophila models for evaluating new therapeutic compounds.


Asunto(s)
Cannabinol , Descubrimiento de Drogas , Animales , Humanos , Cannabinol/farmacología , Cannabinol/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Relación Estructura-Actividad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Drosophila
2.
Artículo en Inglés | MEDLINE | ID: mdl-37158809

RESUMEN

Introduction: The legalization of cannabis products has increased their usage in the United States. Among the ∼500 active compounds, this is especially true for cannabidiol (CBD)-based products, which are being used to treat a range of ailments. Research is ongoing regarding the safety, therapeutic potential, and molecular mechanism of cannabinoids. Drosophila (fruit flies) are widely used to model a range of factors that impact neural aging, stress responses, and longevity. Materials and Methods: Adult wild-type Drosophila melanogaster cohorts (w1118/+) were treated with different Δ9-tetrahydrocannabinol (THC) and CBD dosages and examined for neural protective properties using established neural aging and trauma models. The therapeutic potential of each compound was assessed using circadian and locomotor behavioral assays and longevity profiles. Changes to NF-κB pathway activation were assessed by measuring expression levels of downstream targets using quantitative real-time polymerase chain reaction analysis of neural cDNAs. Results: Flies exposed to different CBD or THC dosages showed minimal effects to sleep and circadian-based behaviors or the age-dependent decline in locomotion. The 2-week CBD (3 µM) treatment did significantly enhance longevity. Flies exposed to different CBD and THC dosages were also examined under stress conditions, using the Drosophila mild traumatic brain injury (mTBI) model (10×). Pretreatment with either compound did not alter baseline expression of key inflammatory markers (NF-κB targets), but did reduce neural mRNA profiles at a key 4-h time point following mTBI exposure. Locomotor responses were also significantly improved 1 and 2 weeks following mTBI. After mTBI (10×) exposure, the 48-h mortality rate improved for CBD (3 µM)-treated flies, as were global average longevity profiles for other CBD doses tested. While not significant, THC (0.1 µM)-treated flies show a net positive impact on acute mortality and longevity profiles following mTBI (10×) exposure. Conclusions: This study shows that the CBD and THC dosages examined had at most a modest impact on basal neural function, while demonstrating that CBD treatments had significant neural protective properties for flies following exposure to traumatic injury.

4.
Cells ; 10(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919883

RESUMEN

Drosophila are widely used to study neural development, immunity, and inflammatory pathways and processes associated with the gut-brain axis. Here, we examine the response of adult Drosophila given an inactive bacteriologic (IAB; proprietary lysate preparation of Lactobacillus bulgaricus, ReseT®) and a probiotic (Lactobacillus rhamnosus, LGG). In vitro, the IAB activates a subset of conserved Toll-like receptor (TLR) and nucleotide-binding, oligomerization domain-containing protein (NOD) receptors in human cells, and oral administration slowed the age-related decline of adult Drosophila locomotor behaviors. On average, IAB-treated flies lived significantly longer (+23%) and had lower neural aggregate profiles. Different IAB dosages also improved locomotor function and longevity profiles after traumatic brain injury (TBI) exposure. Mechanistically, short-term IAB and LGG treatment altered baseline nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κß) signaling profiles in neural and abdominal tissues. Overall, at select dosages, IAB and LGG exposure has a positive impact on Drosophila longevity, neural aging, and mild traumatic brain injury (TBI)-related responses, with IAB showing greater benefit. This includes severe TBI (sTBI) responses, where IAB treatment was protective and LGG increased acute mortality profiles. This work shows that Drosophila are an effective model for testing bacterial-based biologics, that IAB and probiotic treatments promote neuronal health and influence inflammatory pathways in neural and immune tissues. Therefore, targeted IAB treatments are a novel strategy to promote the appropriate function of the gut-brain axis.


Asunto(s)
Bacterias/química , Productos Biológicos/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Encéfalo/patología , Drosophila melanogaster/fisiología , Tracto Gastrointestinal/patología , Envejecimiento Saludable/efectos de los fármacos , Inflamación/patología , Animales , Productos Biológicos/farmacología , Lesiones Traumáticas del Encéfalo/patología , Drosophila melanogaster/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Lacticaseibacillus rhamnosus/fisiología , Longevidad/efectos de los fármacos , Modelos Biológicos , Agregado de Proteínas/efectos de los fármacos , Receptores de Superficie Celular/metabolismo
5.
Aging (Albany NY) ; 13(3): 3269-3289, 2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33550278

RESUMEN

Geroprotectors are compounds that slow the biological aging process in model organisms and may therefore extend healthy lifespan in humans. It is hypothesized that they do so by preserving the more youthful function of multiple organ systems. However, this hypothesis has rarely been tested in any organisms besides C. elegans and D. melanogaster. To determine if two life-extending compounds for Drosophila maintain a more youthful phenotype in old mice, we asked if they had anti-aging effects in both the brain and kidney. We utilized rapidly aging senescence-accelerated SAMP8 mice to investigate age-associated protein level alterations in these organs. The test compounds were two cognition-enhancing Alzheimer's disease drug candidates, J147 and CMS121. Mice were fed the compounds in the last quadrant of their lifespan, when they have cognitive deficits and are beginning to develop CKD. Both compounds improved physiological markers for brain and kidney function. However, these two organs had distinct, tissue-specific protein level alterations that occurred with age, but in both cases, drug treatments restored a more youthful level. These data show that geroprotective AD drug candidates J147 and CMS121 prevent age-associated disease in both brain and kidney, and that their apparent mode of action in each tissue is distinct.


Asunto(s)
Envejecimiento/efectos de los fármacos , Encéfalo/efectos de los fármacos , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Enfermedad de Alzheimer , Animales , Caenorhabditis elegans , Curcumina/análogos & derivados , Curcumina/farmacología , Modelos Animales de Enfermedad , Drosophila melanogaster , Femenino , Masculino , Ratones , Insuficiencia Renal Crónica
6.
Trends Pharmacol Sci ; 39(12): 1004-1007, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30446211

RESUMEN

Geroprotectors are compounds that slow the rate of biological aging and therefore may reduce the incidence of age-associated diseases such as Alzheimer's disease (AD). However, few have therapeutic efficacy in mammalian AD models. Here we describe the identification of geroneuroprotectors (GNPs), novel AD drug candidates that meet the criteria for geroprotectors.


Asunto(s)
Envejecimiento/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Descubrimiento de Drogas/métodos , Fármacos Neuroprotectores/farmacología , Envejecimiento/patología , Enfermedad de Alzheimer/prevención & control , Animales , Encéfalo/crecimiento & desarrollo , Humanos , Fármacos Neuroprotectores/uso terapéutico
7.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642630

RESUMEN

The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.


Asunto(s)
Envejecimiento/metabolismo , Ayuno/metabolismo , Músculo Esquelético/metabolismo , Neuronas/metabolismo , Transcriptoma , Envejecimiento/genética , Animales , Drosophila , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Neuronas/fisiología , Proteolisis
8.
Aging Cell ; 17(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29316249

RESUMEN

Aging is a major driving force underlying dementia, such as that caused by Alzheimer's disease (AD). While the idea of targeting aging as a therapeutic strategy is not new, it remains unclear how closely aging and age-associated diseases are coupled at the molecular level. Here, we discover a novel molecular link between aging and dementia through the identification of the molecular target for the AD drug candidate J147. J147 was developed using a series of phenotypic screening assays mimicking disease toxicities associated with the aging brain. We have previously demonstrated the therapeutic efficacy of J147 in several mouse models of AD. Here, we identify the mitochondrial α-F1 -ATP synthase (ATP5A) as a target for J147. By targeting ATP synthase, J147 causes an increase in intracellular calcium leading to sustained calcium/calmodulin-dependent protein kinase kinase ß (CAMKK2)-dependent activation of the AMPK/mTOR pathway, a canonical longevity mechanism. Accordingly, modulation of mitochondrial processes by J147 prevents age-associated drift of the hippocampal transcriptome and plasma metabolome in mice and extends lifespan in drosophila. Our results link aging and age-associated dementia through ATP synthase, a molecular drug target that can potentially be exploited for the suppression of both. These findings demonstrate that novel screens for new AD drug candidates identify compounds that act on established aging pathways, suggesting an unexpectedly close molecular relationship between the two.


Asunto(s)
Envejecimiento/genética , Demencia/genética , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , Humanos , Mitocondrias/metabolismo
9.
PLoS One ; 11(10): e0164239, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711219

RESUMEN

The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.


Asunto(s)
Autofagia , Drosophila/genética , Sistema Nervioso/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Conducta Animal , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ayuno , Femenino , Genotipo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Longevidad , Masculino , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Autophagy ; 12(11): 2256-2257, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27560096

RESUMEN

Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports. Autophagy, as a clearance pathway, exerts protective effects in multiple neurological disease models. In a recent publication, we highlighted the development of a novel repetitive mTBI system using Drosophila, which recapitulates several phenotypes associated with trauma in mammalian models. In particular, flies subjected to mTBI exhibit an acute impairment of the macroautophagy/autophagy pathway that is restored 1 wk following traumatic injury exposure. These phenotypes closely resemble temporary autophagy defects observed in a mouse TBI model. Through these studies, we also identified methods to directly assess autophagic responses in the fly nervous system and laid the groundwork for future studies designed to identify genetic, epigenetic and environmental factors that have an impact on TBI outcomes.


Asunto(s)
Autofagia , Lesiones Traumáticas del Encéfalo/patología , Drosophila melanogaster/fisiología , Animales , Modelos Animales de Enfermedad , Ratones , Transducción de Señal
11.
Sci Rep ; 6: 25252, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27143646

RESUMEN

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecular responses to injury has been the limited availability of effective genetic model systems that could be used to identify the key genes and pathways that modulate both the acute and long-term responses to TBI. Here we report the development of a severe and mild-repetitive TBI model using Drosophila. Using this system, key features that are typically found in mammalian TBI models were also identified in flies, including the activation of inflammatory and autophagy responses, increased Tau phosphorylation and neuronal defects that impair sleep-related behaviors. This novel injury paradigm demonstrates the utility of Drosophila as an effective tool to validate genetic and environmental factors that influence the whole animal response to trauma and to identify prospective therapies needed for the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Drosophila , Animales
12.
PLoS One ; 10(7): e0132768, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26182057

RESUMEN

Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.


Asunto(s)
Envejecimiento/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Olfato/genética , Envejecimiento/metabolismo , Animales , Autofagia/genética , Ritmo Circadiano/genética , Cortejo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Masculino , Actividad Motora , Neuronas/metabolismo , Neuronas/patología , Agregado de Proteínas , Factores Sexuales
13.
PLoS Genet ; 9(12): e1003970, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339790

RESUMEN

Obesity is defined by excessive lipid accumulation. However, the active mechanistic roles that lipids play in its progression are not understood. Accumulation of ceramide, the metabolic hub of sphingolipid metabolism, has been associated with metabolic syndrome and obesity in humans and model systems. Here, we use Drosophila genetic manipulations to cause accumulation or depletion of ceramide and sphingosine-1-phosphate (S1P) intermediates. Sphingolipidomic profiles were characterized across mutants for various sphingolipid metabolic genes using liquid chromatography electrospray ionization tandem mass spectroscopy. Biochemical assays and microscopy were used to assess classic hallmarks of obesity including elevated fat stores, increased body weight, resistance to starvation induced death, increased adiposity, and fat cell hypertrophy. Multiple behavioral assays were used to assess appetite, caloric intake, meal size and meal frequency. Additionally, we utilized DNA microarrays to profile differential gene expression between these flies, which mapped to changes in lipid metabolic pathways. Our results show that accumulation of ceramides is sufficient to induce obesity phenotypes by two distinct mechanisms: 1) Dihydroceramide (C14:0) and ceramide diene (C14:2) accumulation lowered fat store mobilization by reducing adipokinetic hormone- producing cell functionality and 2) Modulating the S1P: ceramide (C14:1) ratio suppressed postprandial satiety via the hindgut-specific neuropeptide like receptor dNepYr, resulting in caloric intake-dependent obesity.


Asunto(s)
Ceramidas/metabolismo , Lisofosfolípidos/metabolismo , Síndrome Metabólico/genética , Obesidad/metabolismo , Esfingosina/análogos & derivados , Tejido Adiposo/metabolismo , Adiposidad/genética , Animales , Apetito/genética , Cromatografía Liquida , Modelos Animales de Enfermedad , Drosophila melanogaster , Ingestión de Energía/genética , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Mutación , Obesidad/patología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Espectrometría de Masa por Ionización de Electrospray , Esfingosina/metabolismo
14.
Int J Cell Biol ; 2012: 156272, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956958
15.
Int J Cell Biol ; 2012: 219625, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666256

RESUMEN

Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs). For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.

16.
Autophagy ; 7(6): 572-83, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21325881

RESUMEN

Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes. These unique structures are closely associated with protein inclusions containing ubiquitin as well as key components of the autophagy pathway. In this study we show that detergent fractionation followed by western blot analysis of insoluble ubiquitinated proteins (IUP), mammalian p62 and its Drosophila homologue, Ref(2)P can be used to quantitatively assess the activity level of aggregate clearance (aggrephagy) in complex tissues. Using this technique we show that genetic or age-dependent changes that modify the long-term enhancement or suppression of aggrephagy can be identified. Moreover, using the Drosophila model system this method can be used to establish autophagy-dependent protein clearance profiles that are occurring under a wide range of physiological conditions including developmental, fasting and altered metabolic pathways. This technique can also be used to examine proteopathies that are associated with human disorders such as frontotemporal dementia, Huntington and Alzheimer disease. Our findings indicate that measuring IUP profiles together with an assessment of p62/Ref(2)P proteins can be used as a screening or diagnostic tool to characterize genetic and age-dependent factors that alter the long-term function of autophagy and the clearance of protein aggregates occurring within complex tissues and cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia , Citoplasma/metabolismo , Proteínas de Unión al ADN , Detergentes/farmacología , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Humanos , Microscopía Electrónica de Transmisión/métodos , Modelos Biológicos , Modelos Genéticos , Mutación , Proteína Sequestosoma-1 , Factores de Tiempo
17.
Mol Cell ; 38(2): 265-79, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417604

RESUMEN

There is growing evidence that macroautophagic cargo is not limited to bulk cytosol in response to starvation and can occur selectively for substrates, including aggregated proteins. It remains unclear, however, whether starvation-induced and selective macroautophagy share identical adaptor molecules to capture their cargo. Here, we report that Alfy, a phosphatidylinositol 3-phosphate-binding protein, is central to the selective elimination of aggregated proteins. We report that the loss of Alfy inhibits the clearance of inclusions, with little to no effect on the starvation response. Alfy is recruited to intracellular inclusions and scaffolds a complex between p62(SQSTM1)-positive proteins and the autophagic effectors Atg5, Atg12, Atg16L, and LC3. Alfy overexpression leads to elimination of aggregates in an Atg5-dependent manner and, likewise, to protection in a neuronal and Drosophila model of polyglutamine toxicity. We propose that Alfy plays a key role in selective macroautophagy by bridging cargo to the molecular machinery that builds autophagosomes.


Asunto(s)
Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Factores de Transcripción/genética
18.
Autophagy ; 6(3): 330-44, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20168092

RESUMEN

Accumulation of ubiquitinated proteins in cytoplasmic and/or nuclear inclusions is a hallmark of several diseases associated with premature cell death. SQSTM1/p62 is known to bind ubiquitinated substrates and aid their aggregation and degradation by macroautophagy. We show here that p62 is required to recruit the large phosphoinositide-binding protein ALFY to cytoplasmic p62 bodies generated upon amino acid starvation or puromycin-treatment. ALFY, as well as p62, is required for formation and autophagic degradation of cytoplasmic ubiquitin-positive inclusions. Moreover, both p62 and ALFY localize to nuclear promyleocytic leukemia (PML) bodies. The Drosophila p62 homologue Ref(2) P accumulates in ubiquitinated inclusions in the brain of flies carrying mutations in the ALFY homologue Blue cheese, demonstrating that ALFY is required for autophagic degradation of p62-associated ubiquitinated proteins in vivo. We conclude that p62 and ALFY interact to organize misfolded, ubiquitinated proteins into protein bodies that become degraded by autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Cuerpos de Inclusión/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Relacionadas con la Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inhibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Macrólidos/metabolismo , Proteínas de la Membrana/genética , Complejos Multiproteicos/metabolismo , Pliegue de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1 , Factores de Transcripción/genética , Proteínas Ubiquitinadas/metabolismo
19.
Basic Res Cardiol ; 104(2): 169-80, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19242643

RESUMEN

Autophagy is a critical cellular housekeeping process that is essential for removal of damaged or unwanted organelles and protein aggregates. Under conditions of starvation, it is also a mechanism to break down proteins to generate amino acids for synthesis of new and more urgently needed proteins. In the heart, autophagy is upregulated by starvation, reactive oxygen species, hypoxia, exercise, and ischemic preconditioning, the latter a well-known potent cardioprotective phenomenon. The observation that upregulation of autophagy confers protection against ischemia/reperfusion injury and inhibition of autophagy is associated with a loss of cardioprotection conferred by pharmacological conditioning suggests that the pathway plays a key role in enhancing the heart's tolerance to ischemia. While many of the antecedent signaling pathways of preconditioning are well-defined, the mechanisms by which preconditioning and autophagy converge to protect the heart are unknown. In this review we discuss mechanisms that potentially underlie the linkage between cardioprotection and autophagy in the heart.


Asunto(s)
Autofagia/fisiología , Citoprotección/fisiología , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos
20.
Autophagy ; 4(4): 500-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18326940

RESUMEN

Autophagy is involved in cellular clearance of aggregate-prone proteins, thereby having a cytoprotective function. Studies in yeast have shown that the PI 3-kinase Vps34 and its regulatory protein kinase Vps15 are important for autophagy, but the possible involvement of these proteins in autophagy in a multicellular animal has not been addressed genetically. Here, we have created a Drosophila deletion mutant of vps15 and studied its role in autophagy and aggregate clearance. Homozygous Deltavps15 Drosophila died at the early L3 larval stage. Using GFP-Atg8a as an autophagic marker, we employed fluorescence microscopy to demonstrate that fat bodies of wild type Drosophila larvae accumulated autophagic structures upon starvation whereas vps15 fat bodies showed no such response. Likewise, electron microscopy revealed starvation-induced autophagy in gut cells from wild type but not Deltavps15 larvae. Fluorescence microscopy showed that Deltavps15 mutant tissues accumulated profiles that were positive for ubiquitin and Ref(2)P, the Drosophila homolog of the sequestosome marker SQSTM1/p62. Biochemical fractionation and Western blotting showed that these structures were partially detergent insoluble, and immuno-electron microscopy further demonstrated the presence of Ref(2)P positive membrane free protein aggregates. These results provide the first genetic evidence for a function of Vps15 in autophagy in multicellular organisms and suggest that the Vps15-containing PI 3-kinase complex may play an important role in clearance of protein aggregates.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Unión al ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Cuerpo Adiposo/citología , Cuerpo Adiposo/metabolismo , Eliminación de Gen , Larva/metabolismo , Larva/ultraestructura , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Inanición , Ubiquitina/metabolismo , Proteína de Clasificación Vacuolar VPS15
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA