Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 221
1.
Ther Apher Dial ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38837319

INTRODUCTION: Extracellular vesicles (EVs) have been identified as playing a role in atherosclerosis. METHODS: A group of 37 hypercholesterolemic patients with atherosclerotic cardiovascular diseases (ASCVD) and 9 patients requiring hemodialysis (HD) were selected for the study. RESULTS: EVs were comparably reduced by various LA methods (Thermo: 87.66% ± 3.64, DALI: 87.96% ± 4.81, H.E.L.P.: 83.38% ± 11.98; represented as SEM). However, LDL-C (66%; 55%; 75%) and Lp(a) (72%; 67%; 79%) were less effectively reduced by DALI. There was no significant difference in the reduction of EVs when comparing different techniques, such as hemoperfusion (DALI; n = 13), a precipitation (H.E.L.P.; n = 5), and a double filtration procedure (Thermofiltration; n = 19). Additionally, no effect of hemodialysis on EVs reduction was found. CONCLUSIONS: The study suggests that EVs can be effectively removed by various LA procedures, and this effect appears to be independent of the specific LA procedure used, as compared to hemodialysis.

2.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Article En | MEDLINE | ID: mdl-38528182

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


MicroRNAs , Schizophrenia , Animals , Humans , Mice , Microglia/metabolism , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Schizophrenia/genetics
3.
Nature ; 628(8006): 145-153, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538785

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


CA1 Region, Hippocampal , DNA Breaks, Double-Stranded , DNA Repair , Inflammation , Memory , Toll-Like Receptor 9 , Animals , Female , Male , Mice , Aging/genetics , Aging/pathology , CA1 Region, Hippocampal/physiology , Centrosome/metabolism , Cognitive Dysfunction/genetics , Conditioning, Classical , Extracellular Matrix/metabolism , Fear , Genomic Instability/genetics , Histones/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Memory/physiology , Mental Disorders/genetics , Neurodegenerative Diseases/genetics , Neuroinflammatory Diseases/genetics , Neurons/metabolism , Neurons/pathology , Nuclear Envelope/pathology , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
4.
Biology (Basel) ; 13(2)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38392287

Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.

5.
Mol Neurobiol ; 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38217668

Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/ß-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.

6.
Sci Data ; 10(1): 849, 2023 12 01.
Article En | MEDLINE | ID: mdl-38040703

Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Systematic studies on human post-mortem brain tissue of patients with genetic subtypes of FTD are currently lacking. The Risk and Modyfing Factors of Frontotemporal Dementia (RiMod-FTD) consortium therefore has generated a multi-omics dataset for genetic subtypes of FTD to identify common and distinct molecular mechanisms disturbed in disease. Here, we present multi-omics datasets generated from the frontal lobe of post-mortem human brain tissue from patients with mutations in MAPT, GRN and C9orf72 and healthy controls. This data resource consists of four datasets generated with different technologies to capture the transcriptome by RNA-seq, small RNA-seq, CAGE-seq, and methylation profiling. We show concrete examples on how to use the resulting data and confirm current knowledge about FTD and identify new processes for further investigation. This extensive multi-omics dataset holds great value to reveal new research avenues for this devastating disease.


Frontotemporal Dementia , Multiomics , Humans , Frontal Lobe , Frontotemporal Dementia/genetics , Mutation
7.
Front Neurosci ; 17: 1291446, 2023.
Article En | MEDLINE | ID: mdl-37928731

Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.

8.
Transl Psychiatry ; 13(1): 294, 2023 09 13.
Article En | MEDLINE | ID: mdl-37699900

There is a strong medical need to develop suitable biomarkers to improve the diagnosis and treatment of depression, particularly in predicting response to certain therapeutic approaches such as electroconvulsive therapy (ECT). MicroRNAs are small non-coding RNAs that have the ability to influence the transcriptome as well as proteostasis at the systems level. Here, we investigate the role of circulating microRNAs in depression and response prediction towards ECT. Of the 64 patients with treatment-resistant major depression (MDD) who received ECT treatment, 62.5% showed a response, defined as a reduction of ≥50% in the MADRS total score from baseline. We performed smallRNA sequencing in blood samples that were taken before the first ECT, after the first and the last ECT. The microRNAome was compared between responders and non-responders. Co-expression network analysis identified three significant microRNA modules with reverse correlation between ECT- responders and non-responders, that were amongst other biological processes linked to inflammation. A candidate microRNA, namely miR-223-3p was down-regulated in ECT responders when compared to non-responders at baseline. In line with data suggesting a role of miR-223-3p in inflammatory processes we observed higher expression levels of proinflammatory factors Il-6, Il-1b, Nlrp3 and Tnf-α in ECT responders at baseline when compared to non-responders. ROC analysis of confirmed the diagnostic power of miR-223-3p demarcating ECT-responders from non-responder subjects (AUC = 0.76, p = 0.0031). Our data suggest that miR-223-3p expression and related cytokine levels could serve as predictors of response to ECT in individuals with treatment-resistant depressive disorders.


Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Electroconvulsive Therapy , MicroRNAs , Humans , Depressive Disorder, Major/therapy , Depression , MicroRNAs/genetics , Depressive Disorder, Treatment-Resistant/therapy
9.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Article En | MEDLINE | ID: mdl-37533404

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Barth Syndrome , Mice , Animals , Barth Syndrome/metabolism , Barth Syndrome/pathology , Cardiolipins/metabolism , AMP-Activated Protein Kinases/metabolism , Glycolysis , Fatty Acids/metabolism , Adenosine Triphosphate
11.
Schizophr Res Cogn ; 32: 100280, 2023 Jun.
Article En | MEDLINE | ID: mdl-36846489

As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cognitive performance. The sample comprised 215 patients with schizophrenia (age, 42.9 ± 12.0 years; 66.0 % male) and 197 healthy controls (age, 38.5 ± 16.4 years; 39.3 % male) from the PsyCourse Study. ELS was assessed with the Childhood Trauma Screener (CTS). We used analyses of covariance and correlation analyses to investigate the association of total ELS load and ELS subtypes with cognitive performance. ELS was reported by 52.1 % of patients and 24.9 % of controls. Independent of ELS, cognitive performance on neuropsychological tests was lower in patients than controls (p < 0.001). ELS load was more closely associated with neurocognitive deficits (cognitive composite score) in controls (r = -0.305, p < 0.001) than in patients (r = -0.163, p = 0.033). Moreover, the higher the ELS load, the more cognitive deficits were found in controls (r = -0.200, p = 0.006), while in patients, this correlation was not significant after adjusting for PANSS. ELS load was more strongly associated with cognitive deficits in healthy controls than in patients. In patients, disease-related positive and negative symptoms may mask the effects of ELS-related cognitive deficits. ELS subtypes were associated with impairments in various cognitive domains. Cognitive deficits appear to be mediated through higher symptom burden and lower educational level.

12.
J Parkinsons Dis ; 13(2): 179-196, 2023.
Article En | MEDLINE | ID: mdl-36744345

BACKGROUND: Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE: We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS: We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS: We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION: To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.


MicroRNAs , Parkinson Disease , Synucleinopathies , Mice , Animals , Synucleinopathies/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mice, Transgenic , MicroRNAs/genetics , Neuronal Plasticity , Nerve Tissue Proteins
13.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Article En | MEDLINE | ID: mdl-36812208

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Alzheimer Disease , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Humans , Mice , Animals , Aged , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/metabolism , Alzheimer Disease/metabolism , Aging/metabolism , RNA/metabolism , Mammals/genetics
14.
Cell Mol Gastroenterol Hepatol ; 15(5): 1219-1246, 2023.
Article En | MEDLINE | ID: mdl-36758798

BACKGROUND & AIMS: Loss of AT-rich interactive domain-containing protein 1A (ARID1A) fosters acinar-to-ductal metaplasia (ADM) and pancreatic carcinogenesis by down-regulating transcription programs controlling acinar cell identity. However, how ARID1A reacts to metaplasia-triggering environmental cues remains elusive. Here, we aimed to elucidate the role of ARID1A in controlling ductal pancreatic gene signatures and deciphering hierarchical signaling cues determining ARID1A-dependent chromatin regulation during acinar cell reprogramming. METHODS: Acinar cell explants with differential ARID1A status were subjected to genome-wide expression analyses. The impact of epidermal growth factor receptor (EGFR) signaling, NFATc1 activity, and ARID1A status on acinar reprogramming processes were characterized by ex vivo ADM assays and transgenic mouse models. EGFR-dependent ARID1A chromatin binding was studied by chromatin immunoprecipitation sequencing analysis and cellular fractionation. RESULTS: EGFR signaling interferes with ARID1A-dependent transcription by inducing genome-wide ARID1A displacement, thereby phenocopying ARID1A loss-of-function mutations and inducing a shift toward ADM permissive ductal transcription programs. Moreover, we show that EGFR signaling is required to push ARID1A-deficient acinar cells toward a metaplastic phenotype. Mechanistically, we identified the transcription factor nuclear factor of activated T cells 1 (NFATc1) as the central regulatory hub mediating both EGFR signaling-induced genomic ARID1A displacement and the induction of ADM-promoting gene signatures in the absence of ARID1A. Consequently, pharmacologic inhibition of NFATc1 or its depletion in transgenic mice not only preserves genome-wide ARID1A occupancy, but also attenuates acinar metaplasia led by ARID1A loss. CONCLUSIONS: Our data describe an intimate relationship between environmental signaling and chromatin remodeling in orchestrating cell fate decisions in the pancreas, and illustrate how ARID1A loss influences transcriptional regulation in acinar cell reprogramming.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Acinar Cells/metabolism , Chromatin , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Cellular Reprogramming , Transcription Factors/genetics , ErbB Receptors/genetics , Mice, Transgenic , Metaplasia , DNA-Binding Proteins/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism
15.
Cell Rep ; 42(2): 112063, 2023 02 28.
Article En | MEDLINE | ID: mdl-36753414

Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in turn increase excitatory synapse formation in recipient hippocampal neurons, which is dependent on the inter-neuronal delivery of these miRNAs. Transcriptomic analysis further indicates the differential expression of developmental and synaptogenesis-related genes by BDNF-induced EVs, many of which are predicted targets of miR-132-5p, miR-218-5p, and miR-690. Furthermore, BDNF-induced EVs up-regulate synaptic vesicle (SV) clustering in a transmissible manner, thereby increasing synaptic transmission and synchronous neuronal activity. As BDNF and EV-miRNAs miR-218 and miR-132 were previously implicated in neuropsychiatric disorders such as anxiety and depression, our results contribute to a better understanding of disorders characterized by aberrant neural circuit connectivity.


Extracellular Vesicles , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/metabolism , Extracellular Vesicles/metabolism
16.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36768211

Schizophrenia (SZ) is a serious mental disorder that is typically treated with antipsychotic medication. Treatment-resistant schizophrenia (TRS) is the condition where symptoms remain after pharmacological intervention, resulting in long-lasting functional and social impairments. As the identification and treatment of a TRS patient requires previous failed treatments, early mechanisms of detection are needed in order to quicken the access to effective therapy, as well as improve treatment adherence. In this study, we aim to find a microRNA (miRNA) signature for TRS, as well as to shed some light on the molecular pathways potentially involved in this severe condition. To do this, we compared the blood miRNAs of schizophrenia patients that respond to medication and TRS patients, thus obtaining a 16-miRNA TRS profile. Then, we assessed the ability of this signature to separate responders and TRS patients using hierarchical clustering, observing that most of them are grouped correctly (~70% accuracy). We also conducted a network, pathway analysis, and bibliography search to spot molecular pathways potentially altered in TRS. We found that the response to stress seems to be a key factor in TRS and that proteins p53, SIRT1, MDM2, and TRIM28 could be the potential mediators of such responses. Finally, we suggest a molecular pathway potentially regulated by the miRNAs of the TRS profile.


Antipsychotic Agents , MicroRNAs , Schizophrenia , Humans , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/diagnosis , MicroRNAs/genetics , MicroRNAs/therapeutic use , Schizophrenia, Treatment-Resistant , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Drug Resistance/genetics
17.
EMBO Mol Med ; 15(3): e14837, 2023 03 08.
Article En | MEDLINE | ID: mdl-36789546

Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.


Multiple Sulfatase Deficiency Disease , Humans , Multiple Sulfatase Deficiency Disease/diagnosis , Multiple Sulfatase Deficiency Disease/genetics , Multiple Sulfatase Deficiency Disease/pathology , Bexarotene , Drug Evaluation, Preclinical , Sulfatases/genetics , Oxidoreductases Acting on Sulfur Group Donors
18.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Article En | MEDLINE | ID: mdl-36598943

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Forkhead Transcription Factors , Rett Syndrome , Mice , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Rett Syndrome/genetics , Epigenesis, Genetic , Chromatin/genetics , Chromatin/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
19.
J Affect Disord ; 325: 1-6, 2023 03 15.
Article En | MEDLINE | ID: mdl-36621676

BACKGROUND: Mitochondria generate energy through oxidative phosphorylation (OXPHOS). The function of key OXPHOS proteins can be altered by variation in mitochondria-related genes, which may increase the risk of mental illness. We investigated the association of mitochondria-related genes and their genetic risk burden with cognitive performance. METHODS: We leveraged cross-sectional data from 1320 individuals with a severe psychiatric disorder and 466 neurotypical individuals from the PsyCourse Study. The cognitive tests analyzed were the Trail-Making Test, Verbal Digit Span Test, Digit-Symbol Test, and Multiple Choice Vocabulary Intelligence Test. Association analyses between the cognitive tests, and single-nucleotide polymorphisms (SNPs) mapped to mitochondria-related genes, and their polygenic risk score (PRS) for schizophrenia (SCZ) were performed with PLINK 1.9 and R program. RESULTS: We found a significant association (FDR-adjusted p < 0.05) in the Cytochrome C Oxidase Assembly Factor 8 (COA8) gene locus of the OXPHOS pathway with the Verbal Digit Span (forward) test. Mitochondrial PRS was not significantly associated with any of the cognitive tests. LIMITATIONS: Moderate statistical power due to relatively small sample size. CONCLUSIONS: COA8 encodes a poorly characterized mitochondrial protein involved in apoptosis. Here, this gene was associated with the Verbal Digit Span (forward) test, which evaluates short-term memory. Our results warrant replication and may lead to better understanding of cognitive impairment in mental disorders.


Cognitive Dysfunction , Schizophrenia , Humans , Cross-Sectional Studies , Schizophrenia/complications , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Neuropsychological Tests , Cognition , Mitochondria/genetics
20.
J Biomol Struct Dyn ; 41(5): 1639-1648, 2023 03.
Article En | MEDLINE | ID: mdl-35068382

The three subtypes of estrogen-related receptors ERRα, ERRß, and ERRγ are nuclear receptors mediating metabolic processes in various tissues such as the skeletal muscle, fat tissue, bone, and liver. Although the knowledge on their physiological ligands is limited, they have been implicated as drug targets for important indications including diabetes, cardiovascular diseases, and osteoporosis. As in other nuclear receptors, their ligand binding pocket is buried within the core of the receptor and connected to its surrounding by ligand pathways. Here, we investigated these pathways with conventional molecular dynamics as well as metadynamics simulations to reveal their distribution and their capability to facilitate ligand translocation. Dependent on the ERR subtype and the conformational state of the receptor, we could detect different pathways to be favored. Overall, the results suggested pathways IIIa and IIIb to be favored in the agonistic conformation, while antagonists preferred pathways I, II, and V. Along the pathways, the ligands passed different gating mechanisms of the receptor, including groups of protein residues as well as whole secondary structure elements, to leave the binding site. Even though these pathways are suggested to influence ligand specificity of the receptors and their elucidation might advance rational drug design, they have not yet been studied in ERRs.Communicated by Ramaswamy H. Sarma.


Estrogens , Ligands , Molecular Conformation , Binding Sites
...