Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Br J Pharmacol ; 175(4): 708-725, 2018 02.
Article En | MEDLINE | ID: mdl-29214652

BACKGROUND AND PURPOSE: Benzodiazepines, non-selective positive allosteric modulators (PAMs) of GABAA receptors, have significant side effects that limit their clinical utility. As many of these side effects are mediated by the α1 subunit, there has been a concerted effort to develop α2/3 subtype-selective PAMs. EXPERIMENTAL APPROACH: In vitro screening assays were used to identify molecules with functional selectivity for receptors containing α2/3 subunits over those containing α1 subunits. In vivo receptor occupancy (RO) was conducted, prior to confirmation of in vivo α2/3 and α1 pharmacology through quantitative EEG (qEEG) beta frequency and zolpidem drug discrimination in rats respectively. PF-06372865 was then progressed to Phase 1 clinical trials. KEY RESULTS: PF-06372865 exhibited functional selectivity for those receptors containing α2/3/5 subunits, with significant positive allosteric modulation (90-140%) but negligible activity (≤20%) at GABAA receptors containing α1 subunits. PF-06372865 exhibited concentration-dependent occupancy of GABAA receptors in preclinical species. There was an occupancy-dependent increase in qEEG beta frequency and no generalization to a GABAA α1 cue in the drug-discrimination assay, clearly demonstrating the lack of modulation at the GABAA receptors containing an α1 subtype. In a Phase 1 single ascending dose study in healthy volunteers, evaluation of the pharmacodynamics of PF-06372865 demonstrated a robust increase in saccadic peak velocity (a marker of α2/3 pharmacology), increases in beta frequency qEEG and a slight saturating increase in body sway. CONCLUSIONS AND IMPLICATIONS: PF-06372865 has a unique clinical pharmacology profile and a highly predictive translational data package from preclinical species to the clinical setting.


GABA Modulators/pharmacology , Receptors, GABA-A/physiology , Translational Research, Biomedical/methods , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , GABA Modulators/chemistry , HEK293 Cells , Humans , Male , Positron-Emission Tomography/methods , Rats , Rats, Sprague-Dawley
2.
Front Neurosci ; 11: 568, 2017.
Article En | MEDLINE | ID: mdl-29075176

To consider whether imaging retinal vasculature may be used as a marker for cortical vessels, we compared fluorescein angiography flow dynamics before and after pharmacological disruption of blood-neural barriers. Sodium fluorescein (1%, 200 µl/kg) was intravenously delivered in anesthetized adult Long Evans rats (n = 44, brain = 18, retina = 26). In the brain cohort, a cranial window was created to allow direct visualization of surface cortical vessels. Video fluorescein angiography was captured using a rodent retinal camera at 30 frames/second and fluorescence intensity profiles were evaluated for the time to reach 50% brightness (half-rise), 50% decay (half-fall), and the plateau level of remnant fluorescence (offset, %). Cortical vessels fluoresced earlier (artery half-rise: 5.6 ± 0.2 s) and decayed faster (half-fall: 10.3 ± 0.2 s) compared to retinal vasculature. Cortical vessels also had a considerably higher offset, particularly in the capillaries/extravascular space (41.4 ± 2.7%) whereas pigment in the retina reduces such residual fluorescence. In a sub-cohort of animals, sodium deoxycholate (DOC, 0.06 M dissolved in sterile saline, 1 mL) was delivered intravenously to cause simultaneous disruption of the blood-brain and blood-retinal barriers. A separate group received saline as vehicle control. Fluorescein angiography was re-measured at 6 and 24 h after drug infusion and evaluated by comparing flow dynamics to the upper quartile (75%) of the control group. Retinal vasculature was more sensitive to DOC-induced disruption with a higher fluorescence offset at 6 h (47.3 ± 10.6%). A delayed effect was seen in cortical vessels with a higher offset evident only at 24 h (65.6 ± 10.1%). Here we have developed a method to quantitatively compare fluorescein angiography dynamics in the retina and superficial cortical vessels. Our results show that systemic disruption of blood-neural barriers causes vascular leakage in both tissues but earlier in the retina suggesting that pharmacological blood-neural barrier disruption may be detected earlier in the eye than in cortical vasculature.

3.
J Ophthalmol ; 2016: 5801826, 2016.
Article En | MEDLINE | ID: mdl-27239335

Objective. To examine whether retinal electrophysiology is a useful surrogate marker of drug penetrance into the central nervous system (CNS). Materials and Methods. Brain and retinal electrophysiology were assessed with full-field visually evoked potentials and electroretinograms in conscious and anaesthetised rats following systemic or local administrations of centrally penetrant (muscimol) or nonpenetrant (isoguvacine) compounds. Results. Local injections into the eye/brain bypassed the blood neural barriers and produced changes in retinal/brain responses for both drugs. In conscious animals, systemic administration of muscimol resulted in retinal and brain biopotential changes, whereas systemic delivery of isoguvacine did not. General anaesthesia confounded these outcomes. Conclusions. Retinal electrophysiology, when recorded in conscious animals, shows promise as a viable biomarker of drug penetration into the CNS. In contrast, when conducted under anaesthetised conditions confounds can be induced in both cortical and retinal electrophysiological recordings.

4.
PLoS One ; 9(11): e111330, 2014.
Article En | MEDLINE | ID: mdl-25365578

PURPOSE: We describe a novel approach to analyze fluorescein angiography to investigate fluorescein flow dynamics in the rat posterior retina as well as identify abnormal areas following laser photocoagulation. METHODS: Experiments were undertaken in adult Long Evans rats. Using a rodent retinal camera, videos were acquired at 30 frames per second for 30 seconds following intravenous introduction of sodium fluorescein in a group of control animals (n = 14). Videos were image registered and analyzed using principle components analysis across all pixels in the field. This returns fluorescence intensity profiles from which, the half-rise (time to 50% brightness), half-fall (time for 50% decay) back to an offset (plateau level of fluorescence). We applied this analysis to video fluorescein angiography data collected 30 minutes following laser photocoagulation in a separate group of rats (n = 7). RESULTS: Pixel-by-pixel analysis of video angiography clearly delineates differences in the temporal profiles of arteries, veins and capillaries in the posterior retina. We find no difference in half-rise, half-fall or offset amongst the four quadrants (inferior, nasal, superior, temporal). We also found little difference with eccentricity. By expressing the parameters at each pixel as a function of the number of standard deviation from the average of the entire field, we could clearly identify the spatial extent of the laser injury. CONCLUSIONS: This simple registration and analysis provides a way to monitor the size of vascular injury, to highlight areas of subtle vascular leakage and to quantify vascular dynamics not possible using current fluorescein angiography approaches. This can be applied in both laboratory and clinical settings for in vivo dynamic fluorescent imaging of vasculature.


Fluorescein Angiography , Retinal Vessels , Animals , Blood Pressure , Disease Models, Animal , Fluorescein Angiography/methods , Lasers/adverse effects , Rats , Retinal Diseases/diagnosis , Retinal Diseases/etiology , Retinal Diseases/pathology , Retinal Vessels/pathology , Retinal Vessels/radiation effects
5.
PLoS One ; 8(9): e74172, 2013.
Article En | MEDLINE | ID: mdl-24069276

The electroretinogram (ERG, retina) and visual evoked potential (VEP, brain) are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.


Consciousness/physiology , Evoked Potentials, Visual , Retina/physiology , Anesthesia , Anesthetics/pharmacology , Animals , Electrodes, Implanted , Electroretinography , Evoked Potentials, Visual/drug effects , Male , Rats
6.
Eur J Pharmacol ; 616(1-3): 101-6, 2009 Aug 15.
Article En | MEDLINE | ID: mdl-19540226

The present study describes the optimisation of an autoradiography assay that provides a means to measure the in vitro potency of melanin-concentrating hormone receptor 1 (MCH(1)) antagonists in native tissues and their ex vivo receptor occupancy. Initial localisation studies demonstrated that the MCH(1) receptor radioligand [(125)I]-S36057 bound to rat caudate putamen with specific binding of consistently >60%. In vitro, the MCH(1) receptor antagonists GW3430, SNAP-94847 and 4'-{[1-(cyclopropylmethyl)piperidin-4-ylidene] [5-fluoro-6-(trifluoromethyl)-1H-benzimidazol-2-yl]methyl}biphenyl-3-carbonitrile (referred to as Compound A) exhibited concentration dependent inhibition of the specific binding of [(125)I]-S36057, with a rank order of affinity of SNAP-94847>Compound A>GW3430. In an ex vivo occupancy assay, Compound A dosed orally to rats caused a concentration dependent inhibition of the specific binding of [(125)I]-S36057 to rat caudate putamen. The occupancy reached 87+/-11% at 30 mg/kg and the estimated ED(50) was 9.3 mg/kg, which was equivalent to a free plasma concentration of 40 nM. As MCH has been reported to play a role in the regulation of the sleep cycle, the effect of Compound A on sleep parameters was investigated. However Compound A, at exposures that achieved near maximal receptor occupancy, failed to demonstrate any effects on the sleep/wake pattern in telemetered rats. We conclude that our ex vivo receptor occupancy assay is suitable for selecting centrally penetrant MCH(1) receptor antagonists and that, despite high levels of receptor occupancy, the selective MCH(1) receptor antagonist Compound A failed to elicit any changes in sleep electroencephalogram (EEG) parameters.


Brain/metabolism , Receptors, Somatostatin/metabolism , Sleep/physiology , Animals , Autoradiography , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Binding, Competitive , Brain/drug effects , Brain/physiology , Dose-Response Relationship, Drug , Electroencephalography , In Vitro Techniques , Male , Piperidines/metabolism , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/antagonists & inhibitors , Sleep/drug effects , Substrate Specificity
7.
Neuropharmacology ; 51(1): 168-72, 2006 Jul.
Article En | MEDLINE | ID: mdl-16697018

In the present study, the occupancy of flumazenil (Ro 15-1788; 1-30mg/kg p.o.) at the benzodiazepine site of rat brain GABA(A) receptors was compared using in vivo and ex vivo binding methodologies with [(3)H]flumazenil as the radioligand. Animals either received tracer quantities of [(3)H]flumazenil 3min before being killed for the in vivo binding, or were killed and brain homogenates incubated with 1.8nM [(3)H]flumazenil. The flumazenil dose required to inhibit in vivo binding of [(3)H]flumazenil by 50% (ID(50)) was 2.0mg/kg, which represents the most accurate measure of benzodiazepine site occupancy by flumazenil in vivo. Occupancy measured in crude brain homogenates using the ex vivo method was time dependent with a 3mg/kg dose giving occupancies of 77% and 12% using 0.5 or 60min ex vivo incubations times, respectively, presumably due to dissociation from the binding site during the ex vivo incubation. When incubation time was minimised (0.5min), and despite being under non-equilibrium conditions, the ex vivo method gave an ID(50) of 1.5mg/kg which was not too dissimilar from that observed using in vivo binding (2.0mg/kg). As expected, ex vivo binding can give an underestimation of receptor occupancy but this can be minimised by careful attention to the kinetics of unlabelled drug and radioligand.


Brain Chemistry/drug effects , Flumazenil/metabolism , GABA Modulators/metabolism , Radiopharmaceuticals/metabolism , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Animals , Binding Sites/drug effects , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Flumazenil/pharmacokinetics , GABA Modulators/pharmacokinetics , In Vitro Techniques , Male , Rats , Rats, Sprague-Dawley
...