RESUMEN
Previous studies have suggested that mammal life history varies along the fast-slow continuum and that, in eutherians, this continuum is linked to variation in the potential contribution of survival and reproduction to population growth rate (λ). Fast eutherians mature early, have large litters and short lifespans, and exhibit high potential contribution of age at first reproduction and fertility to λ, while slow eutherians show high potential contribution of survival to λ. However, marsupials have typically been overlooked in comparative tests of mammalian life-history evolution. Here, we tested whether the eutherian life-history pattern extends to marsupials, and show that marsupial life-history trade-offs are organized along two major axes: (i) the reproductive output and dispersion axis, and (ii) the fast-slow continuum, with an additional association between adult survival and body mass. Life-history traits that potentially drive changes in λ are similar in eutherians and marsupials with slow life histories, but differ in fast marsupials; age at first reproduction is the most important trait contributing to λ and fertility contributes little. Marsupials have slower life histories than eutherians, and differences between these clades may derive from their contrasting reproductive modes; marsupials have slower development, growth and metabolism than eutherians of equivalent size.
Asunto(s)
Rasgos de la Historia de Vida , Marsupiales , Animales , Crecimiento Demográfico , Euterios , FertilidadRESUMEN
Suicidal reproduction (semelparity) has evolved in only four genera of mammals. In these insectivorous marsupials, all males die after mating, when failure of the corticosteroid feedback mechanism elevates stress hormone levels during the mating season and causes lethal immune system collapse (die-off). We quantitatively test and resolve the evolutionary causes of this surprising and extreme life history strategy. We show that as marsupial predators in Australia, South America, and Papua New Guinea diversified into higher latitudes, seasonal predictability in abundance of their arthropod prey increased in multiple habitats. More-predictable prey peaks were associated with shorter annual breeding seasons, consistent with the suggestion that females accrue fitness benefits by timing peak energy demands of reproduction to coincide with maximum food abundance. We demonstrate that short mating seasons intensified reproductive competition between males, increasing male energy investment in copulations and reducing male postmating survival. However, predictability of annual prey cycles alone does not explain suicidal reproduction, because unlike insect abundance, peak ovulation dates in semelparous species are often synchronized to the day among years, triggered by a species-specific rate of change of photoperiod. Among species with low postmating male survival, we show that those with suicidal reproduction have shorter mating seasons and larger testes relative to body size. This indicates that lethal effort is adaptive in males because females escalate sperm competition by further shortening and synchronizing the annual mating period and mating promiscuously. We conclude that precopulatory sexual selection by females favored the evolution of suicidal reproduction in mammals.