Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 915049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782139

RESUMEN

One of the most significant challenges in the treatment of fungal infections is the relatively long turnaround time (TAT) required for fungal species identification. The length of TAT to identification can impact patient clinical outcomes by delaying appropriate targeted therapy. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has demonstrated exceptional utility in the rapid identification of bacteria and yeasts in the clinical microbiology laboratory. The capability of MALDI-TOF MS for rapid identification of clinical isolates presents an opportunity for significant advancement in the identification of filamentous molds. In this study, we employed a diagnostic algorithm using MALDI-TOF MS for the rapid identification of filamentous molds in order to assess the impact of this technology on TATs. The majority of isolates included in this study were able to be identified by MALDI-TOF MS (78%). Further, these isolates were identified in less than three days from first detection of colony growth. This study demonstrates the utility of MALDI-TOF MS in the rapid identification of filamentous molds in the clinical mycology laboratory.


Asunto(s)
Hongos , Micosis , Algoritmos , Humanos , Rayos Láser , Micosis/diagnóstico , Micosis/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
2.
J Clin Microbiol ; 60(7): e0052622, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35695488

RESUMEN

Next-generation sequencing (NGS) workflows applied to bronchoalveolar lavage (BAL) fluid specimens could enhance the detection of respiratory pathogens, although optimal approaches are not defined. This study evaluated the performance of the Respiratory Pathogen ID/AMR (RPIP) kit (Illumina, Inc.) with automated Explify bioinformatic analysis (IDbyDNA, Inc.), a targeted NGS workflow enriching specific pathogen sequences and antimicrobial resistance (AMR) markers, and a complementary untargeted metagenomic workflow with in-house bioinformatic analysis. Compared to a composite clinical standard consisting of provider-ordered microbiology testing, chart review, and orthogonal testing, both workflows demonstrated similar performances. The overall agreement for the RPIP targeted workflow was 65.6% (95% confidence interval, 59.2 to 71.5%), with a positive percent agreement (PPA) of 45.9% (36.8 to 55.2%) and a negative percent agreement (NPA) of 85.7% (78.1 to 91.5%). The overall accuracy for the metagenomic workflow was 67.1% (60.9 to 72.9%), with a PPA of 56.6% (47.3 to 65.5%) and an NPA of 77.2% (68.9 to 84.1%). The approaches revealed pathogens undetected by provider-ordered testing (Ureaplasma parvum, Tropheryma whipplei, severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], rhinovirus, and cytomegalovirus [CMV]), although not all pathogens detected by provider-ordered testing were identified by the NGS workflows. The RPIP targeted workflow required more time and reagents for library preparation but streamlined bioinformatic analysis, whereas the metagenomic assay was less demanding technically but required complex bioinformatic analysis. The results from both workflows were interpreted utilizing standardized criteria, which is necessary to avoid reporting nonpathogenic organisms. The RPIP targeted workflow identified AMR markers associated with phenotypic resistance in some bacteria but incorrectly identified blaOXA genes in Pseudomonas aeruginosa as being associated with carbapenem resistance. These workflows could serve as adjunctive testing with, but not as a replacement for, standard microbiology techniques.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Líquido del Lavado Bronquioalveolar/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenómica , SARS-CoV-2 , Flujo de Trabajo
4.
J Neuroinflammation ; 18(1): 71, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722254

RESUMEN

Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer's disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Macrófagos/patología , Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Animales , Humanos , Nervios Periféricos/patología
5.
mBio ; 11(6)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219095

RESUMEN

Metagenomic next-generation sequencing (mNGS) offers an agnostic approach for emerging pathogen detection directly from clinical specimens. In contrast to targeted methods, mNGS also provides valuable information on the composition of the microbiome and might uncover coinfections that may associate with disease progression and impact prognosis. To evaluate the use of mNGS for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or other infecting pathogens, we applied direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing. Nasopharyngeal (NP) swab specimens from 50 patients under investigation for CoV disease 2019 (COVID-19) were sequenced, and the data were analyzed by the CosmosID bioinformatics platform. Further, we characterized coinfections and the microbiome associated with a four-point severity index. SARS-CoV-2 was identified in 77.5% (31/40) of samples positive by RT-PCR, correlating with lower cycle threshold (Ct) values and fewer days from symptom onset. At the time of sampling, possible bacterial or viral coinfections were detected in 12.5% of SARS-CoV-2-positive specimens. A decrease in microbial diversity was observed among COVID-19-confirmed patients (Shannon diversity index, P = 0.0082; Chao richness estimate, P = 0.0097; Simpson diversity index, P = 0.018), and differences in microbial communities were linked to disease severity (P = 0.022). Furthermore, statistically significant shifts in the microbiome were identified among SARS-CoV-2-positive and -negative patients, in the latter of whom a higher abundance of Propionibacteriaceae (P = 0.028) and a reduction in the abundance of Corynebacterium accolens (P = 0.025) were observed. Our study corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages rather than the severity of COVID-19. Further, we demonstrate that SARS-CoV-2 causes a significant change in the respiratory microbiome. This work illustrates the utility of mNGS for the detection of SARS-CoV-2, for diagnosing coinfections without viral target enrichment or amplification, and for the analysis of the respiratory microbiome.IMPORTANCE SARS-CoV-2 has presented a rapidly accelerating global public health crisis. The ability to detect and analyze viral RNA from minimally invasive patient specimens is critical to the public health response. Metagenomic next-generation sequencing (mNGS) offers an opportunity to detect SARS-CoV-2 from nasopharyngeal (NP) swabs. This approach also provides information on the composition of the respiratory microbiome and its relationship to coinfections or the presence of other organisms that may impact SARS-CoV-2 disease progression and prognosis. Here, using direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing of NP swab specimens from 50 patients under investigation for COVID-19, we detected SARS-CoV-2 sequences by applying the CosmosID bioinformatics platform. Further, we characterized coinfections and detected a decrease in the diversity of the microbiomes in these patients. Statistically significant shifts in the microbiome were identified among COVID-19-positive and -negative patients, in the latter of whom a higher abundance of Propionibacteriaceae and a reduction in the abundance of Corynebacterium accolens were observed. Our study also corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages of disease rather than with severity of disease. This work illustrates the utility of mNGS for the detection and analysis of SARS-CoV-2 from NP swabs without viral target enrichment or amplification and for the analysis of the respiratory microbiome.


Asunto(s)
COVID-19/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Nasofaringe/virología , SARS-CoV-2/genética , Bacterias/clasificación , COVID-19/microbiología , Coinfección/microbiología , Coinfección/virología , Biología Computacional , Humanos , Metagenoma , Microbiota , ARN Viral/genética , Manejo de Especímenes
6.
J Neuroimmunol ; 349: 577423, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33074142

RESUMEN

Following peripheral nerve injury, macrophages are recruited to the injury site from circulation to clear cellular debris. Injured ß-secretase 1 (BACE1) knockout mice have enhanced macrophage recruitment and debris clearance, which may be due to BACE1 activity in macrophages or the hypomyelination observed in BACE1 knockout mice. To assess if BACE1 expression by macrophages mediates enhanced macrophage recruitment we utilized mice with macrophage specific deletion of BACE1 and saw no increase in macrophage recruitment following injury. This study suggests that expression of BACE1 by macrophages may not be essential for increased recruitment observed previously in global BACE1 KO mice.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/deficiencia , Ácido Aspártico Endopeptidasas/deficiencia , Macrófagos/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Células Cultivadas , Femenino , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Traumatismos de los Nervios Periféricos/patología
7.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32938734

RESUMEN

Antimicrobial susceptibility testing (AST) of cefiderocol poses challenges because of its unique mechanism of action (i.e., requiring an iron-depleted state) and due to differences in interpretative criteria established by the Clinical and Laboratory Standards Institute (CLSI), U.S. Food and Drug Administration (FDA), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Our objective was to compare cefiderocol disk diffusion methods (DD) to broth microdilution (BMD) for AST of Gram-negative bacilli (GNB). Cefiderocol AST was performed on consecutive carbapenem-resistant Enterobacterales (CRE; 58 isolates) and non-glucose-fermenting GNB (50 isolates) by BMD (lyophilized panels; Sensititre; Thermo Fisher) and DD (30 µg; research-use-only [RUO] MASTDISCS and FDA-cleared HardyDisks). Results were interpreted using FDA (prior to 28 September 2020 update), EUCAST, and investigational CLSI breakpoints (BPs). Categorical agreement (CA), minor errors (mE), major errors (ME), and very major errors (VME) were calculated for DD methods. The susceptibilities of all isolates by BMD were 72% (FDA), 75% (EUCAST) and 90% (CLSI). For DD methods, EUCAST BPs demonstrated lower susceptibility at 65% and 66%, compared to 74% and 72% (FDA) and 87% and 89% (CLSI) by HardyDisks and MASTDISCS, respectively. CA ranged from 75% to 90%, with 8 to 25% mE, 0 to 19% ME, and 0 to 20% VME and varied based on disk, GNB, and BPs evaluated. Both DD methods performed poorly for Acinetobacter baumannii complex. There is considerable variability when cefiderocol ASTs are interpreted using CLSI, FDA, and EUCAST breakpoints. DD offers a convenient alternative approach to BMD methods for cefiderocol AST, with the exception of A. baumannii complex isolates.


Asunto(s)
Antibacterianos , Cefalosporinas , Antibacterianos/farmacología , Bacterias Gramnegativas , Humanos , Pruebas de Sensibilidad Microbiana , Cefiderocol
8.
Sci Rep ; 7: 41401, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128284

RESUMEN

Sensory and autonomic neuropathy affects the majority of type II diabetic patients. Clinically, autonomic evaluation often focuses on sudomotor function yet this is rarely assessed in animal models. We undertook morphological and functional studies to assess large myelinated and small unmyelinated axons in the db/db type II diabetes mouse model. We observed that autonomic innervation of sweat glands in the footpads was significantly reduced in db/db mice compared to control db/+ mice and this deficit was greater compared to reductions in intraepidermal sensory innervation of adjacent epidermis. Additionally, db/db mice formed significantly fewer sweat droplets compared to controls as early as 6 weeks of age, a time when no statistical differences were observed electrophysiologically between db/db and db/+ mice studies of large myelinated sensory and motor nerves. The rate of sweat droplet formation was significantly slower and the sweat droplet size larger and more variable in db/db mice compared to controls. Whereas pilocarpine and glycopyrrolate increased and decreased sweating, respectively, in 6 month-old controls, db/db mice did not respond to pharmacologic manipulations. Our findings indicate autonomic neuropathy is an early and prominent deficit in the db/db model and have implications for the development of therapies for peripheral diabetic neuropathy.


Asunto(s)
Sistema Nervioso Autónomo/patología , Sistema Nervioso Autónomo/fisiopatología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Extremidades/patología , Extremidades/fisiopatología , Sensación , Animales , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Epidermis/patología , Masculino , Estimulación Física , Glándulas Sudoríparas/inervación , Temperatura
9.
Neurobiol Dis ; 93: 21-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27080468

RESUMEN

Hematogenous macrophages remove myelin debris from injured peripheral nerves to provide a micro-environment conducive to axonal regeneration. Previously, we observed that injured peripheral nerves from Beta-site APP Cleaving Enzyme 1 (BACE1) knockout (KO) mice displayed earlier influx of and enhanced phagocytosis by macrophages when compared to wild-type (WT) mice. These observations suggest that BACE1 might regulate macrophage influx into distal stumps of injured nerves. To determine through which pathway BACE1 influences macrophage influx, we used a mouse inflammation antibody array to assay the expression of inflammation-related proteins in injured nerves of BACE1 KO and WT mice. The most significant change was in expression of tumor necrosis factor receptor 1 (TNFR1) in the distal stump of injured BACE1 KO nerves. Western blotting of protein extracts confirmed increased expression of TNFR1 and its downstream transcriptional factor NFκB in the BACE1 KO distal stumps. Additionally, treatment of WT mice with a BACE1 inhibitor resulted in increased TNFR1 expression and signaling in the distal stump of injured nerves. Exogenous TNFα increased nuclear translocation of p65 NFκB in BACE1 KO tissue and cultured fibroblasts compared with control WT. BACE1 regulates TNFR1 expression at the level of gene expression and not through proteolytic processing. The accelerated macrophage influx in injured nerves of BACE1 KO mice correlates with increased expression and signaling via TNFR1, indicating a link between BACE1 activity and TNFR1 expression/signaling that might contribute to repair of the injured nervous system.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Vaina de Mielina/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Animales , Macrófagos/metabolismo , Ratones Noqueados , Regeneración Nerviosa/fisiología , Nervios Periféricos/metabolismo , Fagocitosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA