Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Front Plant Sci ; 15: 1341714, 2024.
Article En | MEDLINE | ID: mdl-38434431

Horticultural crops constantly face abiotic stress factors such as salinity, which have intensified in recent years due to accelerated climate change, significantly affecting their yields and profitability. Under these conditions, it has become necessary to implement effective and sustainable solutions to guarantee agricultural productivity and food security. The influence of BALOX®, a biostimulant of plant origin, was tested on the responses to salinity of Lactuca sativa L. var. longifolia plants exposed to salt concentrations up to 150 mM NaCl, evaluating different biometric and biochemical properties after 25 days of treatment. Control plants were cultivated under the same conditions but without the biostimulant treatment. An in situ analysis of root characteristics using a non-destructive, real-time method was also performed. The salt stress treatments inhibited plant growth, reduced chlorophyll and carotenoid contents, and increased the concentrations of Na+ and Cl- in roots and leaves while reducing those of Ca2+. BALOX® application had a positive effect because it stimulated plant growth and the level of Ca2+ and photosynthetic pigments. In addition, it reduced the content of Na+ and Cl- in the presence and the absence of salt. The biostimulant also reduced the salt-induced accumulation of stress biomarkers, such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Therefore, BALOX® appears to significantly reduce osmotic, ionic and oxidative stress levels in salt-treated plants. Furthermore, the analysis of the salt treatments' and the biostimulant's direct effects on roots indicated that BALOX®'s primary mechanism of action probably involves improving plant nutrition, even under severe salt stress conditions, by protecting and stimulating the root absorption zone.

2.
Plants (Basel) ; 12(9)2023 May 03.
Article En | MEDLINE | ID: mdl-37176931

Modern agriculture has boosted the production of food based on the use of pesticides and fertilizers and improved plant varieties. However, the impact of some such technologies is high and not sustainable in the long term. Although the importance of rhizospheres in final plant performance, nutrient cycling, and ecosystems is well recognized, there is still a lack of information on the interactions of their main players. In this paper, four accessions of pepper are studied at the rhizosphere and root level under two farming systems: organic and conventional. Variations in soil traits, such as induced respiration, enzymatic activities, microbial counts, and metabolism of nitrogen at the rhizosphere and bulk soil, as well as measures of root morphology and plant production, are presented. The results showed differences for the evaluated traits between organic and conventional management, both at the rhizosphere and bulk soil levels. Organic farming showed higher microbial counts, enzymatic activities, and nitrogen mobilization. Our results also showed how some genotypes, such as Serrano or Piquillo, modified the properties of the rhizospheres in a very genotype-dependent way. This specificity of the soil-plant interaction should be considered for future breeding programs for soil-tailored agriculture.

3.
Plants (Basel) ; 12(2)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36678946

Peppers (Capsicum sp.) are used both as vegetables and/or spice and their fruits are used in a plethora of recipes, contributing to their flavor and aroma. Among flavor-related traits, pungency (capsaicinoids) and lately volatiles have been considered the most important factors. However, the knowledge of sugars is low, probably due to the fact peppers were historically considered tasteless. Here, using HPLC, we studied the content and profile of major sugars and capsaicinoids in a comprehensive collection of varietal types (genotype, G), grown under different growing systems (environment, E) in two years (Y) and considered the two main ripening stages (R). We found a major contribution to the ripening stage and the genotype in total and individual sugars and capsaicinoids. The year was also significant in most cases, as well as the G × E and G × Y interactions, while the growing system was low or nil. Ripening increased considerably in sugars (from 19.6 to 36.1 g kg-1 on average) and capsaicinoids (from 97 to 142 mg kg-1 on average), with remarkable differences among varieties. Moreover, sugars in fully ripe fruits ranged between 7.5 and 38.5 g kg-1 in glucose and between 5.2 and 34.3 g kg-1 in fructose, and several accessions reached total sugars between 40 and 70 g kg-1, similar to tomatoes. The results reveal the importance of the genotype and the ripening for these traits, particularly sugars, which should be considered key for the improvement of taste and flavor in peppers.

4.
Plants (Basel) ; 12(2)2023 Jan 08.
Article En | MEDLINE | ID: mdl-36679008

Soil salinity is becoming one of the most critical problems for agriculture in the current climate change scenario. Growth parameters, such as plant height, root length and fresh weight, and several biochemical stress markers (chlorophylls, total flavonoids and proline), have been determined in young plants of Solanum melongena, its wild relative Solanum insanum, and their interspecific hybrid, grown in the presence of 200 and 400 mM of NaCl, and in adult plants in the long-term presence of 80 mM of NaCl, in order to assess their responses to salt stress. Cultivated eggplant showed a relatively high salt tolerance, compared to most common crops, primarily based on the control of ion transport and osmolyte biosynthesis. S. insanum exhibited some specific responses, such as the salt-induced increase in leaf K+ contents (653.8 µmol g-1 dry weight) compared to S. melongena (403 µmol g-1 dry weight) at 400 mM of NaCl. Although there were no substantial differences in growth in the presence of salt, biochemical evidence of a better response to salt stress of the wild relative was detected, such as a higher proline content. The hybrid showed higher tolerance than either of the parents with better growth parameters, such as plant height increment (7.3 cm) and fresh weight (240.4% root fresh weight and 113.3% shoot fresh weight) at intermediate levels of salt stress. For most biochemical variables, the hybrid showed an intermediate behaviour between the two parent species, but for proline it was closer to S. insanum (ca. 2200 µmol g-1 dry weight at 200 mM NaCl). These results show the possibility of developing new salt tolerance varieties in eggplant by introducing genes from S. insanum.

5.
Plants (Basel) ; 12(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36616323

In a climate change scenario, crop tolerance to drought must be urgently improved, as it represents an increasingly critical stress reducing agricultural yields worldwide. Although most crops are relatively sensitive to water stress, many of their wild relatives are more tolerant and may be used to improve drought tolerance in our crops. In this study, the response to drought of eggplant (Solanum melongena), its close wild relatives S. insanum and S. incanum and their interspecific hybrids with S. melongena was assessed. The plants were subjected to two treatments for 18 days: control, with irrigation every four days, and drought, with complete interruption of irrigation. Morphological and biomass traits were measured, and physiological and biochemical responses were analysed using stress biomarkers such as proline, flavonoids, and total phenolic compounds. Oxidative stress was quantified by measuring malondialdehyde (MDA) content. As a result of the drought treatment, plant development and tissue water content were seriously affected. Generally, water deficit also caused significant increases in MDA, proline, flavonoids, and total phenolics compounds. Our results comparing parental accessions reveal a better response to drought in one of the S. insanum accessions. The hybrid between S. melongena and S. incanum displayed a better response than the other hybrids and even its parents. The results obtained here might be helpful for future eggplant breeding programmes aimed at improving drought tolerance.

6.
Physiol Plant ; 174(1): e13600, 2022 Jan.
Article En | MEDLINE | ID: mdl-34796959

Capsicum (pepper) is known for its poor seed germination, particularly seed longevity is usually much shorter than other Solanaceae. However, the molecular mechanisms involved are mostly unknown in these species. The present study examines the differences in seed longevity among Capsicum species and varietal types. Feral or less domesticated species, such as Capsicum chinense and particularly Capsicum frutescens, showed higher germination rates than the more domesticated Capsicum annuum after accelerated seed aging treatments. In addition, variability was detected in the expression of genes involved in the response to seed deterioration. The differences observed in ASPG1 expression led us to study the seed protein profile in dry and germinating seeds. Seed storage protein mobilization during germination was faster in seed aging-resistant genotypes. Similarly, the transcriptional change observed for the orthologous gene of the trans-species regulator AtHB25 prompted us to study the structure and molecular components of the seed coat in peppers. All the Capsicum pepper accessions analyzed presented very lignified testa and we observed a positive correlation between the amount of lignin and seed viability. Our results provide essential information to explain the poor germination observed in pepper seeds and provide an experimental framework for future improvements in this important character.


Capsicum , Capsicum/genetics , Germination , Longevity , Seeds/metabolism
7.
Foods ; 10(7)2021 Jun 29.
Article En | MEDLINE | ID: mdl-34209659

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL-1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL-1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL-1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.

8.
Cancers (Basel) ; 13(10)2021 May 11.
Article En | MEDLINE | ID: mdl-34064810

Acute leukemia is the most common malignancy in children. Most patients are cured, but refractory/relapsed AML and ALL are the first cause of death from malignancy in children. Maintenance chemotherapy in ALL has improved survival by inducing leukemic cell apoptosis, but immune surveillance effectors such as NK cells might also contribute. The outcome of B-ALL (n = 70), T-ALL (n = 16), and AML (n = 16) pediatric patients was evaluated according to leukemic cell expression of ligands for activating and inhibiting receptors that regulate NK cell functioning. Increased expression of ULBP-1, a ligand for NKG2D, but not that of CD112 or CD155, ligands for DNAM-1, was associated with poorer 5-year event-free survival (5y-EFS, 77.6% vs. 94.9%, p < 0.03). Reduced expression of HLA-C on leukemic cells in patients with the KIR2DL1/HLA-C*04 interaction was associated with a higher rate of relapse (17.6% vs. 4.4%, p = 0.035) and lower 5y-EFS (70.6% vs. 92.6%, p < 0.002). KIR2DL1/HLA-C*04 interaction was an independent predictive factor of events (HR = 4.795, p < 0.005) or death (HR = 6.731, p < 0.005) and might provide additional information to the current risk stratification. Children who carry the KIR2DL1/HLA-C*04 interaction were refractory to current chemotherapy treatments, including allogeneic stem cell transplantation; therefore, they should be considered as candidates for alternative biological therapies that might offer better results.

9.
Food Res Int ; 132: 109008, 2020 06.
Article En | MEDLINE | ID: mdl-32331664

Wall rocket (Diplotaxis erucoides) is a wild edible herb traditionally consumed in the Mediterranean regions with a characteristic, pungent flavour. However, little is known about its acceptance as a potential new crop. In the present study, an hedonic test with 98 volunteers was performed in order to evaluate the potential of wall rocket as a new crop. Three products were tested corresponding to microgreens, seedlings and baby-leaves. The volatile constituents were also studied due to their probable influence on acceptance, and compared to Dijon's mustard and wasabi. The degree of acceptance was mainly related to taste and pungency. Microgreens were well accepted, whereas seedlings and baby-leaves were mainly appreciated by individuals that enjoy pungent tastes. The purchase intent was also highly related to the acceptance of taste and pungency. The volatiles profile revealed that wall rocket was rich in allyl isothiocyanate, like mustard and wasabi. This compound may be greatly responsible of the relationship between the acceptance of mustard, wasabi and wall rocket. Microgreens displayed the highest levels of isothiocyanates, although the quantity of product tested by panellists did not probably allow the appreciation of such compounds. In baby-leaves, a significant decrease in isothiocyanates GC area and relative abundances was observed. These results suggest that wall rocket microgreens would be accepted by a significant proportion of the general public since pungency is lowly perceived in the product, despite its high levels of isothiocyanates. By contrast, baby-leaves may become a crop for a cohort of consumers that enjoy pungent flavours.


Brassicaceae/chemistry , Plant Extracts/analysis , Volatile Organic Compounds/analysis , Adolescent , Adult , Consumer Behavior , Female , Flavoring Agents/analysis , Humans , Isothiocyanates/analysis , Male , Plant Leaves/chemistry , Seedlings , Taste , Young Adult
10.
J Sci Food Agric ; 100(5): 2208-2223, 2020 Mar 30.
Article En | MEDLINE | ID: mdl-31909478

BACKGROUND: In recent years, the acreage used for organic agriculture and the demand for organic fruit and vegetables have increased considerably. Given this scenario, landraces, such as Capsicum landraces, can provide valuable germplasm. Capsicum peppers are very interesting because of their high phenolic content, and particularly their flavonoid content, which provides a high added value. Moreover, the broad genetic diversity in local varieties expands the opportunities for adaptation to organic production and for exploiting genotype × environment interactions to select peppers with the highest phenolic content. RESULTS: In this work, the main flavonoids of peppers were exhaustively evaluated over 2 years in a wide collection of heirlooms, both unripe and fully ripe, under organic and conventional cultivation. The genotype and ripening stage contributed to a high degree to the variation in flavonoids. The growing system influenced this variation to a lesser extent. Luteolin and quercetin showed the highest contributions to total phenolic content (70% and > 20%, respectively) at both ripening stages, while myricetin, apigenin, and kaempferol showed lower contributrions. The average flavonoid content was higher in ripe fruits, and organic management significantly increased the accumulation of total flavonoids and luteolin. Positive correlations between flavonoids were found at both ripening stages, especially between main flavonoids luteolin and quercetin and between kaempferol and quercetin (ρ > 0.7). CONCLUSION: Genotype × environment interaction enabled the identification of accessions with high flavonoid content grown under organic conditions at both ripening stages, particularly total flavonoids and luteolin at the fully ripe stage. Our results reinforce the importance of a wide genetic variation and of considering different ripening stages and growing conditions for breeding high-quality peppers. © 2020 Society of Chemical Industry.


Capsicum/chemistry , Crops, Agricultural/chemistry , Flavonoids/analysis , Antioxidants/analysis , Ascorbic Acid/analysis , Food Analysis , Fruit/chemistry , Kaempferols/analysis , Luteolin/analysis , Organic Agriculture , Phenols/analysis , Plant Development , Quercetin/analysis
11.
Plant Physiol Biochem ; 143: 72-82, 2019 Oct.
Article En | MEDLINE | ID: mdl-31491702

Little information is available on the physiological and biochemical responses to water stress in eggplant (Solanum melongena). We evaluated four genetically diverse eggplant varieties (MEL3-MEL6) under control and water stress conditions. Measurements were taken for plant growth, tissue water content, levels of chlorophylls a and b, carotenoids, proline, malondialdehyde, total phenolics, total flavonoids, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities. For most traits, the water stress treatment had a greater contribution than the variety effect to the total sums of squares in an ANOVA analysis, except for total flavonoids, SOD, APX, and GR. The water stress treatment had a strong effect on plant growth and tissue water content. In general, water stress reduced the three photosynthetic pigments, increased proline, malondialdehyde, total phenolics, and total flavonoids, although some varietal differences were observed. Different patterns were also detected in the activities of the four enzymes evaluated, but few differences were observed for individual varieties between the control and water stress treatments. Many significant phenotypic correlations were observed among the traits studied, but only eight environmental correlations were detected. A PCA analysis distinctly separated individuals according to the treatment, and revealed a clearer separation of varieties under water stress than under control conditions, pointing to varietal differences in the responses to stress. Our results suggest that proline could be used as a marker for drought stress tolerance in this species. The information obtained provides new insight on the physiological and biochemical responses of eggplant to drought stress.


Solanum melongena/metabolism , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Droughts , Glutathione Reductase/metabolism , Lipid Peroxidation/physiology , Malondialdehyde/metabolism , Oxidative Stress/physiology , Photosynthesis/physiology , Proline/metabolism , Superoxide Dismutase/metabolism
12.
Food Res Int ; 121: 765-775, 2019 07.
Article En | MEDLINE | ID: mdl-31108807

Water celery (Apium nodiflorum) is a wild plant traditionally harvested in some Mediterranean areas for being consumed raw. Despite its appreciated organoleptic properties, the aromatic profile of the fresh vegetable remains to be studied. In the present study, volatile compounds from five wild populations were extracted by the headspace-solid phase microextraction technique, analysed by gas cromatography-mass spectrometry, and compared to related crops. The wild species had a high number of aromatic compounds. It was rich in monoterpenes (49.2%), sesquiterpenes (39.4%) and phenylpropanoids (9.6%), with quantitative differences among populations, in absolute terms and relative abundance. On average, germacrene D was the main compound (16.6%), followed by allo-ocimene (11.9%) and limonene (11.1%). Only in one population, the levels of limonene were greater than those of germacrene D. Among phenylpropanoids, dillapiol displayed the highest levels, and co-occurred with myristicin in all populations except one. These differences may have a genetic component, which would indicate the possibility of establishing selection programmes for the development of water celery as a crop adapted to different market preferences. On the other hand, comparison with related crops revealed some similarities among individual volatiles present in the different crops, which would be responsible of the common aroma notes. However, water celery displayed a unique profile, which was in addition quantitatively richer than others. Thus, this differentiation may promote the use of water celery as a new crop.


Apium/chemistry , Solid Phase Microextraction , Volatile Organic Compounds/analysis , Acyclic Monoterpenes/analysis , Allyl Compounds/analysis , Allylbenzene Derivatives , Benzyl Compounds/analysis , Dioxolanes/analysis , Dioxoles/analysis , Evaluation Studies as Topic , Food Analysis , Limonene/analysis , Monoterpenes/analysis , Odorants/analysis , Plant Extracts/analysis , Polyenes/analysis , Pyrogallol/analogs & derivatives , Pyrogallol/analysis , Sesquiterpenes/analysis , Sesquiterpenes, Germacrane/analysis , Taste
13.
Hortic Res ; 6: 54, 2019.
Article En | MEDLINE | ID: mdl-31044080

Pepper (Capsicum spp.) is one of the most important vegetable crops; however, pepper genomic studies lag behind those of other important Solanaceae. Here we present the results of a high-throughput genotyping-by-sequencing (GBS) study of a collection of 190 Capsicum spp. accessions, including 183 of five cultivated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens) and seven of the wild form C. annuum var. glabriusculum. Sequencing generated 6,766,231 high-quality read tags, of which 40.7% were successfully aligned to the reference genome. SNP calling yielded 4083 highly informative segregating SNPs. Genetic diversity and relationships of a subset of 148 accessions, of which a complete passport information was available, was studied using principal components analysis (PCA), discriminant analysis of principal components (DAPC), and phylogeny approaches. C. annuum, C. baccatum, and C. chinense were successfully separated by all methods. Our population was divided into seven clusters by DAPC, where C. frutescens accessions were clustered together with C. chinense. C. annuum var. glabriusculum accessions were spread into two distinct genetic pools, while European accessions were admixed and closely related. Separation of accessions was mainly associated to differences in fruit characteristics and origin. Phylogeny studies showed a close relation between Spanish and Mexican accessions, supporting the hypothesis that the first arose from a main genetic flow from the latter. Tajima's D statistic values were consistent with positive selection in the C. annuum clusters, possibly related to domestication or selection towards traits of interest. This work provides comprehensive and relevant information on the origin and relationships of Spanish landraces and for future association mapping studies in pepper.

14.
PeerJ ; 7: e6296, 2019.
Article En | MEDLINE | ID: mdl-30723618

BACKGROUND: Fool's watercress (Apium nodiflorum) is an edible vegetable with potential as a new crop. However, little information is available regarding the antioxidant properties of the plant and the individual phenolics accounting for this capacity are unknown. METHODS: The antioxidant properties of twenty-five wild populations were analysed and individual phenolics present in the species reported and compared with celery and parsley. The antioxidant activity was measured as the 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging capacity, and the total phenolics content (TPC) via the Folin-Ciocalteu procedure. The individual phenolics constituents were determined via high performance liquid chromatography (HPLC) as aglycones. RESULTS: The average DPPH and TPC of fool's watercress were 28.1 mg Trolox g-1 DW and 22.3 mg of chlorogenic acid equivalents g-1 DW, respectively, much higher than those of celery and parsley. Significant differences for both DPPH and TPC, which may be explained by either genotype or environmental factors, were detected among groups established according to geographical origin. Quercetin was identified as the major phenolic present in the leaves of the species, unlike parsley and celery, in which high amounts of apigenin and luteolin were determined. Quercetin represented 61.6% of the phenolics targeted in fool's watercress, followed by caffeic acid derivatives as main hydroxycinnamic acids. DISCUSSION: The study reports the high antioxidant properties of fool's watercress based on a large number of populations. Results suggest that quercetin accounts for an important share of the antioxidant capacity of this potential new crop. The study also provides a basis for future breeding programs, suggesting that selection by geographical locations may result in differences in the antioxidant properties.

15.
PLoS One ; 13(11): e0207888, 2018.
Article En | MEDLINE | ID: mdl-30462729

Peppers (Capsicum spp.) are one of the most important vegetables and their double use (vegetable or spice) and two commercial stages (unripe and fully ripe) contributed to their use in many recipes and fast diffusion from America. Nowadays, Spain is a center of diversity for C. annuum, with many landraces, offering a great opportunity for adaptation to organic cultivation. Furthermore, Capsicum peppers contain many bioactive compounds, essential to provide high added-value to these cultivars, especially for organic markets, although knowledge about the effect of organic cultivation on Capsicum fruit quality is still scarce. Here, 37 accessions of Spanish landraces and foreign materials from C. annuum and other species were grown under organic and conventional conditions and evaluated for ascorbic acid (AAC), total phenolics (TP) and total red and yellow/orange carotenoids, considering both ripening stages. A large genotypic variation was found within each ripening stage and growing condition for the studied traits. Also, both stages showed high levels, although fully ripe fruits were the richest. Organic conditions enabled higher levels in fully ripe fruits of AAC and TP on average (135 vs 117 mg·100 g-1 and 232 vs 206 mg·100 g-1) and in most accessions, although the genotype×growing conditions interaction also contributed, but at lower extent, to the observed variation. Significant genotype×ripening stage and growing conditions×ripening stage interactions were also found, suggesting that the magnitude of the increase with ripening depends on the accession and growing conditions. By contrast, there were no differences between growing conditions for carotenoids and differences were mainly due to the genotype factor. Finally, the large genotypic variation and favourable organic conditions allowed identifying several materials from different types and uses with very high levels of bioactive compounds for organic cultivation, in both ripening stages but particularly at fully ripe stage (>500 mg·100 g-1).


Capsicum/chemistry , Capsicum/growth & development , Organic Agriculture , Ascorbic Acid/analysis , Capsicum/genetics , Carotenoids/analysis , Genotype , Phenols/analysis
16.
Pediatr Blood Cancer ; 64(8)2017 Aug.
Article En | MEDLINE | ID: mdl-28097783

Pleuropulmonary blastoma (PPB) is a rare malignancy of childhood. It often represents a manifestation of a hereditary tumor predisposition syndrome (DICER1 syndrome). Because of its malignant potential, surgical resection of cystic lung lesions is recommended in germline DICER1 mutation carriers. We present a case of a 3-year-old male child with type III PPB successfully managed with ifosfamide, vincristine, actinomycin-D, and doxorubicin (IVADo) chemotherapy and surgery. A heterozygous germline pR688X mutation of DICER1 gene was demonstrated. Six years after primary diagnosis, several small lung cysts remained stable without further therapy. The management of residual asymptomatic lung cysts represents a clinical challenge in these patients.


DEAD-box RNA Helicases/genetics , Pulmonary Blastoma/genetics , Ribonuclease III/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child, Preschool , Cysts/pathology , Dactinomycin/administration & dosage , Doxorubicin/administration & dosage , Germ-Line Mutation , Heterozygote , Humans , Ifosfamide/administration & dosage , Lung Diseases/pathology , Male , Pulmonary Blastoma/drug therapy , Pulmonary Blastoma/pathology , Vincristine/administration & dosage
17.
PLoS One ; 10(12): e0144142, 2015.
Article En | MEDLINE | ID: mdl-26642059

Capsicum baccatum, commonly known as ají, has been reported as a source of variation for many different traits to improve common pepper (C. annuum), one of the most important vegetables in the world. However, strong interspecific hybridization barriers exist between them. A comparative study of two wide hybridization approaches for introgressing C. baccatum genes into C. annuum was performed: i) genetic bridge (GB) using C. chinense and C. frutescens as bridge species; and, ii) direct cross between C. annuum and C. baccatum combined with in vitro embryo rescue (ER). A diverse and representative collection of 18 accessions from four cultivated species of Capsicum was used, including C. annuum (12), C. baccatum (3), C. chinense (2), and C. frutescens (1). More than 5000 crosses were made and over 1000 embryos were rescued in the present study. C. chinense performed as a good bridge species between C. annuum and C. baccatum, with the best results being obtained with the cross combination [C. baccatum (♀) × C. chinense (♂)] (♀) × C. annuum (♂), while C. frutescens gave poor results as bridge species due to strong prezygotic and postzygotic barriers. Virus-like-syndrome or dwarfism was observed in F1 hybrids when both C. chinense and C. frutescens were used as female parents. Regarding the ER strategy, the best response was found in C. annuum (♀) × C. baccatum (♂) crosses. First backcrosses to C. annuum (BC1s) were obtained according to the crossing scheme [C. annuum (♀) × C. baccatum (♂)] (♀) × C. annuum (♂) using ER. Advantages and disadvantages of each strategy are discussed in relation to their application to breeding programmes. These results provide breeders with useful practical information for the regular utilization of the C. baccatum gene pool in C. annuum breeding.


Capsicum/genetics , Chimera/genetics , Crosses, Genetic , Genes, Plant , Plant Breeding
18.
Front Plant Sci ; 6: 978, 2015.
Article En | MEDLINE | ID: mdl-26617620

World population is expected to reach 9.2 × 10(9) people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a 'saline agriculture' which will not compete in terms of resources with conventional agriculture.

19.
Food Chem ; 187: 517-24, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-25977058

Tomato (Solanum lycopersicum) local varieties are having an increasing demand. We characterized 69 local tomato accessions from eight cultivar groups for proximate composition traits, major sugars, acids and antioxidants. A large diversity was found, with differences among accessions of almost tenfold for lycopene. Significant differences were found among cultivar group means for most traits. The Cherry and Penjar groups generally presented higher dry matter, soluble solids content, titratable acidity, taste index, ß-carotene, ascorbic acid, total phenolics, and antioxidant activity that the other groups. Wide ranges of variation were found within each cultivar group. Positive correlations were found between proximate traits related to taste and antioxidants. The multivariate principal components analysis confirms the distinct profile of the Cherry and Penjar groups and the large variation within groups. The results will be useful for the differentiation, enhancement and selection of local tomato varieties with improved organoleptic properties and functional quality.


Fruit/chemistry , Solanum lycopersicum/classification , Antioxidants/analysis , Ascorbic Acid/analysis , Carbohydrates/analysis , Carotenoids/analysis , Fruit/classification , Fruit/growth & development , Lycopene , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Phenols/analysis , Phenotype , Quality Control , Sensation , Taste , beta Carotene/analysis
20.
BMC Genomics ; 13: 601, 2012 Nov 08.
Article En | MEDLINE | ID: mdl-23134692

BACKGROUND: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo 'Piel de sapo' ('PS') and C. melo 'Pat 81', with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. RESULTS: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. 'PS' responded with a more rapid infection response than 'Pat 81' at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in 'PS' declined from 451 to 359, while the total number of differentially expressed transcripts in 'Pat 81' increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in 'Pat 81' compared to 'PS' suggested that JA response might be partially responsible for their observed differences in resistance. CONCLUSIONS: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation.


Citrullus/genetics , Cucumis melo/genetics , Mycoses/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Roots/metabolism , Sordariales , Citrullus/microbiology , Cucumis melo/microbiology , Gene Expression Profiling , Mycoses/genetics , Oligonucleotide Array Sequence Analysis , Plant Diseases/genetics , Plant Roots/genetics , Plant Roots/microbiology , Principal Component Analysis
...