Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745374

RESUMEN

The use, production, and disposal of engineering nanomaterials (ENMs), including graphene-related materials (GRMs), raise concerns and questions about possible adverse effects on human health and the environment, considering the lack of harmonized toxicological data on ENMs and the ability of these materials to be released into the air, soil, or water during common industrial processes and/or accidental events. Within this context, the potential release of graphene particles, their agglomerates, and aggregates (NOAA) as a result of sanding of a battery of graphene-based polyester resin composite samples intended to be used in a building was examined. The analyzed samples were exposed to different weathering conditions to evaluate the influence of the weathering process on the morphology and size distribution of the particles released. Sanding studies were conducted in a tailored designed sanding bench connected to time and size resolving measurement devices. Particle size distributions and particle number concentration were assessed using an optical particle counter (OPC) and a condensation particle counter (CPC), respectively, during the sanding operation. A scanning electron microscope/energy dispersive X-ray (SEM/EDX) analysis was performed to adequately characterize the morphology, size, and chemical composition of the released particles. A toxicity screening study of pristine and graphene-based nanocomposites released using the aquatic macroinvertebrate Daphnia magna and relevant human cell lines was conducted to support risk assessment and decision making. The results show a significant release of nanoscale materials during machining operations, including differences attributed to the % of graphene and weathering conditions. The cell line tests demonstrated a higher effect in the human colon carcinoma cell line Caco2 than in the human fibroblasts (A549 cell line), which means that composites released to the environment could have an impact on human health and biota.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34210019

RESUMEN

During the last decade, the use of nanomaterials, due to their multiple utilities, has exponentially increased. Nanomaterials have unique properties such as a larger specific surface area and surface activity, which may result in health and environmental hazards different from those demonstrated by the same materials in bulk form. Besides, due to their small size, they can easily penetrate through the environmental and biological barriers. In terms of exposure potential, the vast majority of studies are focused on workplace areas, where inhalation is the most common route of exposure. The main route of entry into the environment is due to indirect emissions of nanomaterials from industrial settings, as well as uncontrollable releases into the environment during the use, recycling and disposal of nano-enabled products. Accidental spills during production or later transport of nanomaterials and release from wear and tear of materials containing nanomaterials may lead to potential exposure. In this sense, a proper understanding of all significant risks due to the exposure to nanomaterials that might result in a liability claim has been proved to be necessary. In this paper, the utility of an application for smartphones developed for the insurance sector has been validated as a solution for the analysis and evaluation of the emerging risk of the application of nanotechnology in the market. Different exposure scenarios for nanomaterials have been simulated with this application. The results obtained have been compared with real scenarios, corroborating that the use of novel tools can be used by companies that offer risk management in the form of insurance contracts.


Asunto(s)
Seguro , Nanoestructuras , Nanoestructuras/toxicidad , Nanotecnología , Medición de Riesgo , Lugar de Trabajo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33317147

RESUMEN

Currently, nanotechnology plays a key role for technological innovation, including the construction sector. An exponential increase is expected in its application, although this has been hampered by the current degree of uncertainty regarding the potential effects of nanomaterials on both human health and the environment. The accidents, illnesses, and disease related to the use of nanoproducts in the construction sector are difficult to identify. For this purpose, this work analyzes in depth the products included in recognized inventories and the safety data sheets of these construction products. Based on this analysis, a review of the recommendations on the use of manufactured nanomaterials at construction sites is performed. Finally, a protocol is proposed with the aim of it serving as a tool for technicians in decision-making management at construction sites related to the use of manufactured nanomaterials. This proposed protocol should be an adaptive and flexible tool while the manufactured nanomaterials-based work continues to be considered as an "emerging risk," despite the expectation that the protocol will be useful for the development of new laws and recommendations for occupational risk prevention management.


Asunto(s)
Industria de la Construcción , Nanoestructuras , Salud Laboral , Gestión de Riesgos , Industria de la Construcción/métodos , Industria de la Construcción/estadística & datos numéricos , Toma de Decisiones , Ambiente , Unión Europea , Humanos , Nanoestructuras/efectos adversos , Nanotecnología , Salud Laboral/estadística & datos numéricos , Gestión de Riesgos/métodos , Lugar de Trabajo/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...