Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Front Immunol ; 14: 1117320, 2023.
Article En | MEDLINE | ID: mdl-36845105

The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.


Killer Cells, Natural , Liver , Humans , CD56 Antigen/metabolism , Killer Cells, Natural/metabolism , Liver/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Flow Cytometry
2.
Front Immunol ; 13: 922252, 2022.
Article En | MEDLINE | ID: mdl-35911762

NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.


HIV Infections , HIV-1 , Genotype , HLA-C Antigens/metabolism , Histocompatibility Antigens Class I/genetics , Human Immunodeficiency Virus Proteins/genetics , Humans , Killer Cells, Natural , Ligands , Receptors, KIR/metabolism , Receptors, Natural Killer Cell/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins
3.
EMBO Rep ; 23(8): e54133, 2022 08 03.
Article En | MEDLINE | ID: mdl-35758160

NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus-infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV-1-infected cells. By combining an unbiased large-scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV-1-infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor-mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL-mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL-mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti-HIV-1 activity of NK cells but also possesses a multifunctional role beyond receptor-mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.


Cytotoxicity, Immunologic , HIV-1 , TNF-Related Apoptosis-Inducing Ligand/metabolism , Humans , Interferon-gamma/metabolism , Killer Cells, Natural , Lymphocyte Activation
4.
PLoS Pathog ; 18(6): e1010572, 2022 06.
Article En | MEDLINE | ID: mdl-35749424

Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1.


HIV Infections , HIV Seropositivity , HIV-1 , Antiviral Agents/metabolism , Down-Regulation , Humans , Killer Cells, Natural , Ligands , Receptors, Natural Killer Cell/metabolism , Receptors, Virus , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
5.
Kidney Int ; 99(5): 1140-1148, 2021 05.
Article En | MEDLINE | ID: mdl-33359499

BK polyomavirus-associated nephropathy is a common complication after kidney transplantation leading to reduced graft function or loss. The molecular pathogenesis of BK polyomavirus-induced nephropathy is not well understood. A recent study had described a protective effect of the activating natural killer cell receptor KIR3DS1 in BK polyomavirus-associated nephropathy, suggesting a role of NK cells in modulating disease progression. Using an in vitro cell culture model of human BK polyomavirus infection and kidney biopsy samples from patients with BK polyomavirus-associated nephropathy, we observed significantly increased surface expression of the ligand for KIR3DS1, HLA-F, on BK polyomavirus-infected kidney tubular cells. Upregulation of HLA-F expression resulted in significantly increased binding of KIR3DS1 to BK polyomavirus-infected cells and activation of primary KIR3DS-positive natural killer cells. Thus, our data provide a mechanism by which KIR3DS-positive natural killer cells can control BK polyomavirus infection of the kidney, and rationale for exploring HLA-F/KIR3DS1 interactions for immunotherapeutic approaches in BK polyomavirus-associated nephropathy.


BK Virus , Kidney Diseases , Polyomavirus Infections , Tumor Virus Infections , Humans , Killer Cells, Natural/metabolism , Receptors, KIR3DS1/genetics , Receptors, KIR3DS1/metabolism , Up-Regulation
6.
Gastroenterology ; 155(5): 1366-1371.e3, 2018 11.
Article En | MEDLINE | ID: mdl-30031767

Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer (NK) cells. Binding of KIR3DS1 to its recently discovered ligand, HLA-F, activates NK cells and has been associated with resolution of hepatitis C virus (HCV) infection. We investigated the mechanisms by which KIR3DS1 contributes to the antiviral immune response. Using cell culture systems, mice with humanized livers, and primary liver tissue from HCV-infected individuals, we found that the KIR3DS1 ligand HLA-F is up-regulated on HCV-infected cells, and that interactions between KIR3DS1 and HLA-F contribute to NK cell-mediated control of HCV. Strategies to promote interaction between KIR3DS1 and HLA-F might be developed for treatment of infectious diseases and cancer.


Hepacivirus/physiology , Histocompatibility Antigens Class I/physiology , Killer Cells, Natural/immunology , Lymphocyte Activation , Receptors, KIR3DS1/physiology , Virus Replication , Cells, Cultured , Hepatitis C/drug therapy , Humans
...