Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37998178

RESUMEN

Annealing furnaces are critical for achieving the desired material properties in the production of high-quality aluminum products. In addition, energy efficiency has become more and more important in industrial processes due to increasing decarbonization regulations and the price of natural gas. Thus, the current study aims to determine the opportunities to reduce energy consumption in an annealing continuous furnace and the associated emissions. To this end, the heat transfer phenomenon is modeled and solutions for the decreasing fuel consumption are evaluated so that the overall performance of the process is enhanced. A heat transfer model is developed using the finite difference method, and the heat transfer coefficient is calculated using machine learning regression models. The heat transfer model is able to predict the heat transfer coefficient and calculate the aluminum temperature profile along the furnace and the fuel consumption for any given operating condition. Two solutions for boosting the furnace exergy efficiency are evaluated, including the modulation of the furnace temperature profiles and the energy integration by the recycling of exhaust flue gases. The results show that the advanced energy integration approach significantly reduces fuel consumption by up to 20.7%. Sensitivity analysis demonstrates that the proposed strategy can effectively reduce fuel consumption compared with the business-as-usual scenario for a range of sheet thicknesses and sheet velocities.

2.
Entropy (Basel) ; 25(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37510045

RESUMEN

The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition, due to a growing population, the treatment and disposition of residual biomass from agricultural processes, such as sugar cane and orange bagasse, or even from human waste, such as sewage sludge, will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However, these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills, losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason, this work analyzes and optimizes the biomass-based routes of biochemical production (namely, hydrogen and ammonia) using the gasification of residual biomasses. Moreover, the capture of biogenic CO2 aims to reduce the environmental burden, leading to negative emissions in the overall energy system. In this context, the chemical plants were designed, modeled, and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction, exergy efficiency, and general balance of the CO2 emissions were evaluated. As a result, the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand, an overall negative emission balance of -5.95 kgCO2/kgH2 in the hydrogen production route and -1.615 kgCO2/kgNH3 in the ammonia production route can be achieved, thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA