Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Nature ; 594(7861): 66-70, 2021 06.
Article En | MEDLINE | ID: mdl-34079137

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Lakes/chemistry , Oxygen/analysis , Oxygen/metabolism , Temperature , Animals , Climate Change , Ecosystem , Oceans and Seas , Oxygen/chemistry , Phytoplankton/metabolism , Solubility , Time Factors
3.
PLoS One ; 15(11): e0241222, 2020.
Article En | MEDLINE | ID: mdl-33206655

Winter activities on ice are culturally important for many countries, yet they constitute a high safety risk depending upon the stability of the ice. Because consistently cold periods are required to form stable and thick ice, warmer winters could degrade ice conditions and increase the likelihood of falling through the ice. This study provides the first large-scale assessment of winter drowning from 10 Northern Hemisphere countries. We documented over 4000 winter drowning events. Winter drownings increased exponentially in regions with warmer winters when air temperatures neared 0°C. The largest number of drownings occurred when winter air temperatures were between -5°C and 0°C, when ice is less stable, and also in regions where indigenous traditions and livelihood require extended time on ice. Rates of drowning were greatest late in the winter season when ice stability declines. Children and adults up to the age of 39 were at the highest risk of winter drownings. Beyond temperature, differences in cultures, regulations, and human behaviours can be important additional risk factors. Our findings indicate the potential for increased human mortality with warmer winter air temperatures. Incorporating drowning prevention plans would improve adaptation strategies to a changing climate.


Drowning/epidemiology , Hot Temperature , Ice , Seasons , Automobile Driving , Child , Humans , Italy/epidemiology , United States/epidemiology , Young Adult
4.
Mol Ecol ; 28(19): 4500-4512, 2019 10.
Article En | MEDLINE | ID: mdl-31482599

Community composition of freshwater prokaryotes and protists varies through time. Few studies contemporarily investigate temporal variation of these freshwater communities for more than 1 year. We compared the temporal patterns of prokaryotes and protists in three distinct habitats for 4 years (2014-2017) in Lake Tovel, a cold-water lake. This lake showed a marked temperature increase in 2017 linked to altered precipitation patterns. We investigated whether microbial communities reflected this change across habitats and whether changes occurred at the same time and to the same extent. Furthermore, we tested the concept of hydrological year emphasizing the ecological effect of water renewal on communities for its explanatory power of community changes. Microbe diversity was assessed by Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene and 18S rRNA gene, and we applied co-inertia analysis and asymmetric eigenvector maps modelling to infer synchrony and temporal patterns of prokaryotes and protists. When considering community composition, microbes were invariable in synchrony across habitats and indicated a temporal gradient linked to decreasing precipitation; however, when looking at temporal patterns, the extent of synchrony was reduced. Small-scale patterns were similar across habitats and microbes and linked to seasonally varying environmental variables, while large-scale patterns were different and partially linked to an ecosystem change as indicated by increasing water transparency and temperature and decreasing dissolved oxygen. Our advanced statistical approach outlined the multifaceted aspect of synchrony when linked to community composition and temporal patterns.


Bacteria/classification , Eukaryota/classification , Microbiota , Bacteria/genetics , Ecology , Ecosystem , Eukaryota/genetics , High-Throughput Nucleotide Sequencing , Italy , Lakes , RNA, Ribosomal, 18S/genetics , Seasons , Sequence Analysis, RNA
5.
J Environ Manage ; 250: 109479, 2019 Nov 15.
Article En | MEDLINE | ID: mdl-31499467

Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.


Ecology , Ecosystem , Europe
6.
Sci Rep ; 9(1): 10450, 2019 07 18.
Article En | MEDLINE | ID: mdl-31320731

Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.

7.
J Environ Manage ; 242: 246-257, 2019 Jul 15.
Article En | MEDLINE | ID: mdl-31048230

Fresh water is a limited resource under anthropogenic threat. Europeans are using an average of 3550 L per capita per day and this amount is increasing steadily as incomes rise. Water saving options are being actively promoted, but these intensified measures do not yet come close to saving enough water to prevent water shortages that may seriously affect our way of life in the near future. With projected increases in demands for good quality fresh water, educating the public about sustainable personal water use and water quality threats becomes an absolute necessity. One way to achieve this is through engaging citizens in water issues, e.g. through citizen science projects. Using snowball convenience sampling, we distributed a questionnaire among 498 people in 23 countries to investigate whether people were aware of how much water they used, what they perceived as threats to water quality and whether they would like to help improve water quality. Our results showed that the amount of daily water use was greatly underestimated among respondents, especially indirect use of water for the production of goods and services. Furthermore, the effects of climate change and detrimental habits such as feeding ducks were underestimated, presumably because of environmental illiteracy. However, eighty-five percent (85%) of our participants indicated an interest in directly working together with scientists to understand and improve their local water quality. Involving citizens in improving local lake quality promotes both environmental and scientific literacy, and can therefore result in a reduction in daily personal water use. The next iteration of the Water Framework Directive legislation will be launched shortly, requiring water managers to include citizens in their monitoring schemes. Engaging citizens will not only help improve surface water quality, and educate about cause and effect chains in water quality, but will also reduce the personal fresh water usage.


Water Quality , Water , Awareness , Climate Change , Fresh Water
8.
Water Res ; 151: 31-43, 2019 03 15.
Article En | MEDLINE | ID: mdl-30594088

Litter decomposition is a vital part of the global carbon cycle as it determines not only the amount of carbon to be sequestered, but also how fast carbon re-enters the cycle. Freshwater systems play an active role in the carbon cycle as it receives, and decomposes, terrestrial litter material alongside decomposing aquatic plant litter. Decomposition of organic matter in the aquatic environment is directly controlled by water temperature and nutrient availability, which are continuously affected by global change. We adapted the Tea Bag Index (TBI), a highly standardized methodology for determining soil decomposition, for lakes by incorporating a leaching factor. By placing Lipton pyramid tea bags in the aquatic environment for 3 h, we quantified the period of intense leaching which usually takes place prior to litter (tea) decomposition. Standard TBI methodology was followed after this step to determine how fast decomposition takes place (decomposition rate, k1) and how much of the material cannot be broken down and is thus sequestered (stabilization factor, S). A Citizen Science project was organized to test the aquatic TBI in 40 European lakes located in four climate zones, ranging from oligotrophic to hypereutrophic systems. We expected that warmer and/or eutrophic lakes would have a higher decomposition rate and a more efficient microbial community resulting in less tea material to be sequestered. The overall high decomposition rates (k1) found confirm the active role lakes play in the global carbon cycle. Across climate regions the lakes in the warmer temperate zone displayed a higher decomposition rate (k1) compared to the colder lakes in the continental and polar zones. Across trophic states, decomposition rates were higher in eutrophic lakes compared to oligotrophic lakes. Additionally, the eutrophic lakes showed a higher stabilization (S), thus a less efficient microbial community, compared to the oligotrophic lakes, although the variation within this group was high. Our results clearly show that the TBI can be used to adequately assess the decomposition process in aquatic systems. Using "alien standard litter" such as tea provides a powerful way to compare decomposition across climates, trophic states and ecosystems. By providing standardized protocols, a website, as well as face to face meetings, we also showed that collecting scientifically relevant data can go hand in hand with increasing scientific and environmental literacy in participants. Gathering process-based information about lake ecosystems gives managers the best tools to anticipate and react to future global change. Furthermore, combining this process-based information with citizen science, thus outreach, is in complete agreement with the Water Framework Directive goals as set in 2010.


Ecosystem , Lakes , Carbon , Climate , Tea
9.
Sci Data ; 5: 180226, 2018 10 23.
Article En | MEDLINE | ID: mdl-30351308

Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.


Cyanobacteria/chemistry , Environmental Monitoring , Lakes , Climate Change , Europe , Phytoplankton/chemistry , Pigments, Biological
10.
Mol Ecol ; 27(21): 4322-4335, 2018 11.
Article En | MEDLINE | ID: mdl-30176079

Temporal dynamics of bacterioplankton are rarely investigated for multiple habitats and years within individual lakes, limiting our understanding of the variability of bacterioplankton community (BC) composition with respect to environmental factors. We assessed the BC composition of a littoral and two pelagic habitats (euphotic zone and hypolimnion) of Lake Tovel monthly from April 2014 to May 2017 by high-throughput sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The three habitats differed in temperature, light, oxygen and hydrology. In particular, the littoral was the most hydrologically unstable because it receives most of the lake inflow, the hypolimnion was the most stable because of its hydrologically sheltered position, and the pelagic euphotic habitat was intermediate. Consequently, we hypothesized different temporal patterns of BC composition for all three habitats according to their environmental differences. We applied PERMANOVA, nonmetric multidimensional scaling and source-sink analysis to characterize BC composition. Overall, BCs were different among habitats with the littoral showing the highest variability and the hypolimnion the highest stability. The BC of rainy 2014 was distinct from the BCs of other years irrespective of the habitats considered. Seasonal differences in BCs were limited to spring, probably linked to meltwater inflow and mixing. Thus, temporal effects related to year and season were linked to the hydrological gradient of habitats. We suggest that despite potential within-lake dispersal of bacterioplankton by water flow and mixing, local environmental conditions played a major role in Lake Tovel, fostering distinct BCs in the three habitats.


Bacteria/classification , Ecosystem , Plankton/classification , Seasons , Biodiversity , High-Throughput Nucleotide Sequencing , Italy , Lakes/microbiology , RNA, Ribosomal, 16S/genetics
11.
Sci Total Environ ; 627: 373-387, 2018 Jun 15.
Article En | MEDLINE | ID: mdl-29426160

A first synoptic and trans-domain overview of plankton dynamics was conducted across the aquatic sites belonging to the Italian Long-Term Ecological Research Network (LTER-Italy). Based on published studies, checked and complemented with unpublished information, we investigated phytoplankton and zooplankton annual dynamics and long-term changes across domains: from the large subalpine lakes to mountain lakes and artificial lakes, from lagoons to marine coastal ecosystems. This study permitted identifying common and unique environmental drivers and ecological functional processes controlling seasonal and long-term temporal course. The most relevant patterns of plankton seasonal succession were revealed, showing that the driving factors were nutrient availability, stratification regime, and freshwater inflow. Phytoplankton and mesozooplankton displayed a wide interannual variability at most sites. Unidirectional or linear long-term trends were rarely detected but all sites were impacted across the years by at least one, but in many case several major stressor(s): nutrient inputs, meteo-climatic variability at the local and regional scale, and direct human activities at specific sites. Different climatic and anthropic forcings frequently co-occurred, whereby the responses of plankton communities were the result of this environmental complexity. Overall, the LTER investigations are providing an unparalleled framework of knowledge to evaluate changes in the aquatic pelagic systems and management options.


Ecosystem , Environmental Monitoring , Plankton/physiology , Animals , Italy , Phytoplankton , Population Dynamics , Zooplankton
12.
Environ Sci Technol ; 50(20): 10780-10794, 2016 10 18.
Article En | MEDLINE | ID: mdl-27597444

Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.


Ecosystem , Lakes , Environmental Monitoring , Recreation
13.
Front Plant Sci ; 7: 524, 2016.
Article En | MEDLINE | ID: mdl-27148341

Here we report the lipid profiles of ten dinoflagellate species originating from different freshwater habitats and grown at 4, 13, or 20°C akin to their natural occurrence. Lipids were determined by High Performance Liquid Chromatography-ElectroSpray Ionization-Mass Spectrometry in positive and negative ion modes. Besides the well-studied monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) lipids, our study revealed the presence of intact molecular lipid species of trigalactosyldiacylglycerols, betaine diacylglyceryl-carboxyhydroxymethylcholine, sulfolipid sulfoquinovosyldiacylglycerols (SQDG) and phospholipids, in particular phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. In multivariate ordination, the freshwater dinoflagellates studied could be distinguished into two groups based on their lipid profiles. Peridinium aciculiferum, Borghiella dodgei, B. tenuissima and Tovellia coronata belonged to group 1 while Ceratium cornutum, Gymnodinium palustre, Jadwigia applanata, P. cinctum, P. willei, and P. gatunense belonged to group 2. Indicator species analysis evidenced that group 1 was characterized by 36:9 MGDG and 36:9 DGDG and group 2 by 38:9 and 38:10 MGDG, 38:9 and 38:10 DGDG and 34:1 SQDG. We suggest that the grouping of dinoflagellates indicated their range of temperature tolerance. Furthermore, non-thylakoid lipids were linked to dinoflagellate phylogeny based on the large ribosomal sub-unit (28S LSU) rather than their temperature tolerance. Thus certain lipids better reflected habitat adaptation while other lipids better reflected genetic diversity.

14.
J Phycol ; 47(4): 811-20, 2011 Aug.
Article En | MEDLINE | ID: mdl-27020017

Little is known about the UV photobiology of psychrophilic dinoflagellates, particularly in freshwater systems. We addressed the life strategies of Borghiella dodgei Moestrup, Gert. Hansen et Daugbjerg to cope with ambient levels of ultraviolet radiation (UVR) under cold conditions. Several physiological parameters related to growth, metabolism, and UVR protection were determined for 4 d in UVR-exposed and control cells by applying stable isotope analysis, spectrophotometry, and liquid chromatography-mass spectrometry (LC/MS). In UVR-exposed cells, assimilation of (15) N and (13) C and content of chl a and carotenoids, specifically diatoxanthin with respect to dinoxanthin and diadinoxanthin, were increased; furthermore, catalase activity showed a cyclic pattern with a strong increase after UVR exposure but a rapid return to preexposure levels. Both in UVR-exposed and control cells, no lipid peroxidation of galactolipids was observed. However, in UVR-exposed cells, content of galactolipids was higher and linked to an increase in monogalactosyldiacylglycerols (MGDGs). We concluded that Borghiella's adaptation to UVR depended on a general metabolic enhancement and efficient scavenging of oxygen radicals to mitigate and counteract damage. While Borghiella seemed to be well adapted to ambient UVR, the interactive effects of higher temperature and UVR on psychrophilic species in front of climate change merit further investigation.

15.
Rapid Commun Mass Spectrom ; 22(22): 3531-9, 2008 Nov.
Article En | MEDLINE | ID: mdl-18853402

Liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI-MS) has been employed to identify carotenoid esters present in raw organic extracts of pigmented freshwater microalgae and to gain structural information on these compounds. In particular, acyl carotenoid derivatives of Haematococcus pluvialis and Euglena sanguinea have been characterised by tandem mass spectrometry (MS/MS) in a quadrupole ion trap. ESI-MS/MS allows recognition of the presence of carotenoid esters in complicated mixtures without any initial chromatographic work-up and without the need to use UV-Vis photo-diode array (PDA) detectors. Product ion scans of the [M + Na]+ ion lead to known neutral losses of the C7H8 and C8H10 residues from the conjugated polyene moiety of the carotenoid unit, that permit the unambiguous identification of the carotenoid itself. These structurally relevant ions are not observed in positive or negative ion APCI (atmospheric pressure chemical ionisation) mass spectra. Moreover, the several product ions observed in positive and/or negative ion ESI-MS/MS not only are a diagnostic signature of the main structural features of the acyl chains such as length, position and unsaturation, but also display the nominal mass of the parent xanthophyll. Our methodology has been validated (i) by using esters of astaxanthin obtained from off-line purification of the H. pluvialis extracts and structurally elucidated through proton nuclear magnetic resonance (1H-NMR) spectroscopy and (ii) by product analysis of esters by alkaline hydrolysis. The characterisation of the unknown carotenoid esters of E. sanguinea is a demonstration of the capabilities of this methodology.


Carotenoids/chemistry , Chromatography, Liquid/methods , Fresh Water/parasitology , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Chlorophyta/chemistry , Esters/chemistry , Euglena/chemistry
...