Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Front Plant Sci ; 15: 1293307, 2024.
Article En | MEDLINE | ID: mdl-38726298

Sweet corn breeding programs, like field corn, focus on the development of elite inbred lines to produce commercial hybrids. For this reason, genomic selection models can help the in silico prediction of hybrid crosses from the elite lines, which is hypothesized to improve the test cross scheme, leading to higher genetic gain in a breeding program. This study aimed to explore the potential of implementing genomic selection in a sweet corn breeding program through hybrid prediction in a within-site across-year and across-site framework. A total of 506 hybrids were evaluated in six environments (California, Florida, and Wisconsin, in the years 2020 and 2021). A total of 20 traits from three different groups were measured (plant-, ear-, and flavor-related traits) across the six environments. Eight statistical models were considered for prediction, as the combination of two genomic prediction models (GBLUP and RKHS) with two different kernels (additive and additive + dominance), and in a single- and multi-trait framework. Also, three different cross-validation schemes were tested (CV1, CV0, and CV00). The different models were then compared based on the correlation between the estimated breeding values/total genetic values and phenotypic measurements. Overall, heritabilities and correlations varied among the traits. The models implemented showed good accuracies for trait prediction. The GBLUP implementation outperformed RKHS in all cross-validation schemes and models. Models with additive plus dominance kernels presented a slight improvement over the models with only additive kernels for some of the models examined. In addition, models for within-site across-year and across-site performed better in the CV0 than the CV00 scheme, on average. Hence, GBLUP should be considered as a standard model for sweet corn hybrid prediction. In addition, we found that the implementation of genomic prediction in a sweet corn breeding program presented reliable results, which can improve the testcross stage by identifying the top candidates that will reach advanced field-testing stages.

2.
Front Oncol ; 13: 1105395, 2023.
Article En | MEDLINE | ID: mdl-37124531

Background: Diffuse midline glioma (DMG) is an aggressive pediatric central nervous system tumor with strong metastatic potential. As localized treatment of the primary tumor improves, metastatic disease is becoming a more important factor in treatment. We hypothesized that we could model craniospinal irradiation (CSI) through a DMG patient-derived xenograft (PDX) model and that CSI would limit metastatic tumor. Methods: We used a BT245 murine orthotopic DMG PDX model for this work. We developed a protocol and specialized platform to deliver craniospinal irradiation (CSI) (4 Gy x2 days) with a pontine boost (4 Gy x2 days) and compared metastatic disease by pathology, bioluminescence, and MRI to mice treated with focal radiation only (4 Gy x4 days) or no radiation. Results: Mice receiving CSI plus boost showed minimal spinal and brain leptomeningeal metastatic disease by bioluminescence, MRI, and pathology compared to mice receiving radiation to the pons only or no radiation. Conclusion: In a DMG PDX model, CSI+boost minimizes tumor dissemination compared to focal radiation. By expanding effective DMG treatment to the entire neuraxis, CSI has potential as a key component to combination, multimodality treatment for DMG designed to achieve long-term survival once novel therapies definitively demonstrate improved local control.

3.
ACS Omega ; 7(38): 34034-34044, 2022 Sep 27.
Article En | MEDLINE | ID: mdl-36188260

During multidrug combination chemotherapy, activation of the nuclear receptor and the transcription factor human pregnane xenobiotic receptor (hPXR) has been shown to play a role in the development of chemoresistance. Mechanistically, this could occur due to the cancer drug activation of hPXR and the subsequent upregulation of hPXR target genes such as the drug metabolism enzyme, cytochrome P450 3A4 (CYP3A4). In the context of hPXR-mediated drug resistance, hPXR antagonists would be useful adjuncts to PXR-activating chemotherapy. However, there are currently no clinically approved hPXR antagonists in the market. Gefitinib (GEF), a tyrosine kinase inhibitor used for the treatment of advanced non-small-cell lung cancer and effectively used in combinational chemotherapy treatments, is a promising candidate owing to its hPXR ligand-like features. We, therefore, investigated whether GEF would act as an hPXR antagonist when combined with a known hPXR agonist, rifampicin (RIF). At therapeutically relevant concentrations, GEF successfully inhibited the RIF-induced upregulation of endogenous CYP3A4 gene expression in human primary hepatocytes and human hepatocells. Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.

4.
ACS Omega ; 7(12): 9995-10000, 2022 Mar 29.
Article En | MEDLINE | ID: mdl-35382335

Cancer patients often use cannabinoids for alleviating symptoms induced by cancer pathogenesis and cancer treatment. This use of cannabinoids can have unexpected effects in cancer patients depending on the cancer type, resulting in either beneficial (e.g., anticancer) or adverse (e.g., oncogenic) effects. While cannabinoids can enhance the growth and progression of some cancers, they can also suppress the growth and progression of other cancers. However, the underlying mechanisms of such differential effects are poorly understood. miRNAs have been shown to be involved in driving the hallmarks of cancer, affecting cancer growth and progression as well as cancer therapy response. Although the understanding of the effects of cannabinoids and miRNAs as they relate to cancer continues to improve, the interplay between cannabinoid system and miRNAs in cancer pathogenesis and cancer treatment response is poorly understood. Investigation of such interactions between the cannabinoid system and miRNAs could provide novel insights into the underlying mechanisms of the differential effects of cannabinoids in cancer and can help predict and improve the prognosis of cancer patients.

5.
Liver Res ; 5(4): 239-242, 2021 Dec.
Article En | MEDLINE | ID: mdl-34900377

BACKGROUND AND AIM: Chronic exposure to chemotherapeutics can lead to severe adverse events including hepatotoxicity. A combination chemotherapy regimen of doxorubicin (DOX) and cyclophosphamide (CPS) is employed in treatment of several cancers such as leukemia, lymphoma, and breast cancer. It is not well understood whether a combination therapy of DOX and CPS can induce hepatotoxicity. We therefore sought to determine whether co-administration of DOX and CPS at their clinically relevant doses and frequency results in hepatotoxicity. METHODS: Male C57BL/6J mice received one intraperitoneal injection of saline or DOX-2mg /kg and CPS-50mg/kg once a week for 4 weeks. After the treatment period, liver histology and various serum biomarkers of hepatotoxicity were assessed. RESULTS: Co-treatment of DOX and CPS did not alter the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, albumin, globulin, or total protein. Similarly, co-administration of DOX and CPS did not result in a noticeable change in liver histology. However, it was notable that the concomitant treatment with DOX and CPS resulted in a significant increase in serum levels of aspartate aminotransferase (AST). Elevated serum AST levels were also associated with increased serum creatinine kinase (CK) levels, suggesting that the elevated serum AST levels are likely due to muscle injury following the co-administration of DOX and CPS. CONCLUSION: Taken together, our results, for the first time, suggest that co-administration of DOX and CPS, at their clinically relevant doses and frequency does not induce a significant hepatotoxicity in the mice.

6.
Front Neurol ; 12: 764197, 2021.
Article En | MEDLINE | ID: mdl-34803896

Anti-N-methyl D-aspartate (NMDA) receptor (anti-NMDAR) encephalitis has been reported after SARS-CoV-2 infection, but not after SARS-CoV-2 vaccination. We report the first known case of anti-NMDAR encephalitis after SARS-CoV-2 immunization in a young female presenting with acute psychosis, highlighting a rare potential immunological complication of vaccination against SARS-CoV-2 that is currently being distributed worldwide. The patient presented initially with anxiety and hypochondriacal delusions which progressed to psychosis and catatonia but returned to baseline with aggressive immunomodulatory therapy consisting of intravenous immunoglobulin, high-dose glucocorticoids, and rituximab. This study highlights that the workup of acute psychosis should include establishing a history of recent vaccination followed by a thorough neurological assessment, including for anti-NMDAR antibodies in blood and cerebrospinal fluid.

7.
Nat Commun ; 12(1): 5531, 2021 09 20.
Article En | MEDLINE | ID: mdl-34545084

Radiation-induced high-grade gliomas (RIGs) are an incurable late complication of cranial radiation therapy. We performed DNA methylation profiling, RNA-seq, and DNA sequencing on 32 RIG tumors and an in vitro drug screen in two RIG cell lines. We report that based on DNA methylation, RIGs cluster primarily with the pediatric receptor tyrosine kinase I high-grade glioma subtype. Common copy-number alterations include Chromosome (Ch.) 1p loss/1q gain, and Ch. 13q and Ch. 14q loss; focal alterations include PDGFRA and CDK4 gain and CDKN2A and BCOR loss. Transcriptomically, RIGs comprise a stem-like subgroup with lesser mutation burden and Ch. 1p loss and a pro-inflammatory subgroup with greater mutation burden and depleted DNA repair gene expression. Chromothripsis in several RIG samples is associated with extrachromosomal circular DNA-mediated amplification of PDGFRA and CDK4. Drug screening suggests microtubule inhibitors/stabilizers, DNA-damaging agents, MEK inhibition, and, in the inflammatory subgroup, proteasome inhibitors, as potentially effective therapies.


Glioma/genetics , Glioma/pathology , Radiation , Adolescent , Child , Cohort Studies , Computer Simulation , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Neoplasm Grading , Transcriptome/genetics , Young Adult
8.
Clin Cancer Res ; 27(22): 6197-6208, 2021 11 15.
Article En | MEDLINE | ID: mdl-34433654

PURPOSE: Selective RAF-targeted therapy is effective in some patients with BRAFV600E-mutated glioma, though emergent and adaptive resistance occurs through ill-defined mechanisms. EXPERIMENTAL DESIGN: Paired pre-/post- RAF inhibitor (RAFi)-treated glioma samples (N = 15) were obtained and queried for treatment-emergent genomic alterations using DNA and RNA sequencing (RNA-seq). Functional validation of putative resistance mechanisms was performed using established and patient-derived BRAFV600E-mutant glioma cell lines. RESULTS: Analysis of 15 tissue sample pairs identified 13 alterations conferring putative resistance were identified among nine paired samples (including mutations involving ERRFI1, BAP1, ANKHD1, and MAP2K1). We performed functional validation of mechanisms of resistance, including loss of NF1, PTEN, or CBL, in BRAFV600E-mutant glioma lines, and demonstrate they are capable of conferring resistance in vitro. Knockdown of CBL resulted in increased EGFR expression and phosphorylation, a possible mechanism for maintaining ERK signaling within the cell. Combination therapy with a MEKi or EGFR inhibitor was able to overcome resistance to BRAFi, in NF1 knockdown and CBL knockdown, respectively. Restoration of wild-type PTEN in B76 cells (PTEN-/-) restored sensitivity to BRAFi. We identified and validated CRAF upregulation as a mechanism of resistance in one resistant sample. RNA-seq analysis identified two emergent expression patterns in resistant samples, consistent with expression patterns of known glioma subtypes. CONCLUSIONS: Resistance mechanisms to BRAFi in glioma are varied and may predict effective precision combinations of targeted therapy, highlighting the importance of a personalized approach.


Glioma , Proto-Oncogene Proteins B-raf , Glioma/drug therapy , Glioma/genetics , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA-Binding Proteins , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin Thiolesterase
9.
Nat Prod Commun ; 16(5)2021 May.
Article En | MEDLINE | ID: mdl-34306298

BACKGROUND: Botanical supplements have been proven to provide beneficial health effects. However, they can induce unintended adverse events such as hepatotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) has several health benefits including anti-inflammatory, anti-arthritic, antifungal, antibacterial, and neuroprotective effects. It is currently unknown whether OIE has the potential to induce hepatotoxicity. PURPOSE: In the current study, we sought to determine whether OIE can induce hepatotoxicity in C57BL/6J mouse model. METHODS: The male mice were fed powdered rodent food (control group) or powdered rodent food mixed with OIE (Sabroxy®, 500mg/kg) daily for 4 weeks. Following the treatment, we assessed liver histology and serum levels of biomarkers commonly associated with liver damage, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). RESULTS: No significant alterations were observed in liver histology, and serum levels of ALT, AST, ALP, bilirubin, albumin, globulin and total protein in the OIE fed mice compared to the control mice. CONCLUSION: Taken together, our results suggest that OIE, when fed at its physiologically relevant dosage, does not induce hepatotoxicity in C57BL/6J mice.

10.
ACS Chem Neurosci ; 11(24): 4021-4023, 2020 12 16.
Article En | MEDLINE | ID: mdl-33232117

Many patients with a variety of medical conditions take illicit substances concomitantly with clinical drugs. This concomitant usage can lead to life-threatening adverse events. Despite the evidence that these adverse events can be caused by pharmacokinetic interactions, the underlying mechanisms are poorly understood. Investigation of mechanisms involved in dysregulation of endobiotic homeostasis during the concomitant usage of illicit substances with clinical drugs could provide novel insights into pharmacokinetic mechanisms of adverse interactions between illicit substances and clinical drugs.


Illicit Drugs , Substance-Related Disorders , Drug Interactions , Homeostasis , Humans
11.
Clin Pract Cases Emerg Med ; 4(3): 461-463, 2020 Aug.
Article En | MEDLINE | ID: mdl-32926713

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2. COVID-19 first occurred in Wuhan, China, in December 2019, and by March 2020 COVID-19 was declared a global pandemic. CASE PRESENTATION: We describe a case of a 52-year-old female with past medical history of asthma, type 2 diabetes, and previous tobacco use who presented to the emergency department with dyspnea and was found to be positive for COVID-19. We discuss the computed tomographic finding of "crazy-paving" pattern in the patient's lungs and the significance of this finding in COVID-19 patients. DISCUSSION: Emergency providers need to be aware of the different imaging characteristics of various stages of COVID-19 to appropriately treat, isolate, and determine disposition of COVID-19 infected patients. Ground-glass opacities are the earliest and most common imaging finding for COVID-19. Crazy-paving pattern is defined as thickened interlobular septa and intralobular lines superimposed on diffuse ground-glass opacities and should be recognized by emergency providers as a radiographic finding of progressive COVID-19.

12.
Neurooncol Adv ; 2(1): vdaa021, 2020.
Article En | MEDLINE | ID: mdl-32642682

BACKGROUND: Hundreds of systemic chemotherapy trials in diffuse intrinsic pontine glioma (DIPG) have not improved survival, potentially due to lack of intratumoral penetration, which has not previously been assessed in humans. METHODS: We used gemcitabine as a model agent to assess DIPG intratumoral pharmacokinetics (PK) using mass spectrometry. RESULTS: In a phase 0 clinical trial of i.v. gemcitabine prior to biopsy in children newly diagnosed with DIPG by MRI, mean concentration in 4 biopsy cores in patient 1 (H3K27M diffuse midline glioma) was 7.65 µM. These compare favorably to levels for patient 2 (mean 3.85 µM, found to have an H3K27-wildtype low-grade glioma on histology), and from a similar study in adult glioblastoma (adjusted mean 3.48 µM). In orthotopic patient-derived xenograft (PDX) models of DIPG and H3K27M-wildtype pediatric glioblastoma, gemcitabine levels and clearance were similar in tumor, pons, and cortex and did not depend on H3K27 mutation status or tumor location. Normalized gemcitabine levels were similar in patient 1 and the DIPG PDX. CONCLUSIONS: These findings, while limited to one agent, provide preliminary evidence for the hypotheses that lack of intratumoral penetration is not why systemic chemotherapy has failed in DIPG, and orthotopic PDX models can adequately model intratumoral PK in human DIPG.

13.
ACS Chem Neurosci ; 11(10): 1382-1384, 2020 05 20.
Article En | MEDLINE | ID: mdl-32395981

Modern day research, in an attempt to determine the potential therapeutic and adverse effects of illicit substances, is a growing field, but one that faces many regulatory challenges. Due to the potential abuse of illicit substances such as Cannabis, 3,4-methylenedioxymethamphetamine (MDMA), lysergic acid diethylamide (LSD) and psilocybin, regulations have been conceived with the intent of preventing harm and addiction. However, these regulations have also become a major barrier for the scientific community as they suffocate attempts of the scientists to acquire illicit substances for research purposes. Therefore, it is imperative to modify the current regulations of drug scheduling, leading to a reclassification of illicit substances that would allow for extensive testing in research settings. This reclassification effort could advance the potentially life-saving research of illicit substances.


Hallucinogens , N-Methyl-3,4-methylenedioxyamphetamine , Substance-Related Disorders , Hallucinogens/therapeutic use , Humans , Lysergic Acid Diethylamide , Psilocybin , Substance-Related Disorders/drug therapy
14.
Oncogene ; 39(12): 2641, 2020 Mar.
Article En | MEDLINE | ID: mdl-31969682

The original version of this Article omitted the following from the Acknowledgements: This work was supported by the Luke's Army Pediatric Cancer Research Fund St. Baldrick's Scholar Award. This has now been corrected in both the PDF and HTML versions of the Article.

15.
Eur J Drug Metab Pharmacokinet ; 45(2): 297-304, 2020 Apr.
Article En | MEDLINE | ID: mdl-31792727

BACKGROUND AND OBJECTIVE: In many patients with hepatocellular carcinoma (HCC), cytochrome P450 3A4 (CYP3A4) expression has been reported to be significantly reduced in the tumor liver tissue. Moreover, this CYP3A4 repression is associated with decreased CYP3A4-mediated drug metabolism in the tumor liver tissue. However, the underlying mechanisms of CYP3A4 repression are not fully understood. We have previously shown that Mg2+/Mn2+-dependent phosphatase 1A (PPM1A) positively regulates human pregnane X receptor (hPXR)-mediated CYP3A4 expression in a PPM1A expression-dependent manner. We sought to determine whether PPM1A expression is downregulated and whether PPM1A downregulation is correlated with CYP3A4 repression in the tumor liver tissue of HCC patients. METHODS: Quantitative RT-PCR and western blot analyses were performed to study mRNA and protein expression, respectively. Cell-based reporter gene assays were conducted to examine the hPXR transactivation of CYP3A4 promoter activity. RESULTS: Arginase-1 and glypican-3 gene expression studies confirmed that the tumor samples used in our study originate from HCC livers but not non-hepatocellular tumors. mRNA and protein expression of PPM1A and CYP3A4 was found to be significantly repressed in the tumor liver tissues compared to the matched non-tumor liver tissues. In the reporter gene assays, elevated PPM1A levels counteracted the inhibition of hPXR-mediated CYP3A4 promoter activity by signaling pathways that are upregulated in HCC, suggesting that decreased PPM1A levels in HCC could not fully counteract the hPXR-inhibiting signaling pathways. CONCLUSIONS: Together, these results are consistent with the conclusion that PPM1A downregulation in the tumor liver tissue of HCC patients correlates with CYP3A4 repression. Downregulation of PPM1A levels in the tumor liver tissue may contribute to reduced hPXR-mediated CYP3A4 expression, and provide a novel mechanism of CYP3A4 repression in the tumor liver tissue of HCC patients.


Carcinoma, Hepatocellular/genetics , Cytochrome P-450 CYP3A/genetics , Liver Neoplasms/genetics , Protein Phosphatase 2C/genetics , Aged , Carcinoma, Hepatocellular/pathology , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Genes, Reporter/genetics , Humans , Liver Neoplasms/pathology , Male , Middle Aged , Pregnane X Receptor/metabolism , Up-Regulation
16.
Drug Metab Rev ; 52(1): 44-65, 2020 02.
Article En | MEDLINE | ID: mdl-31826670

Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.


Illicit Drugs/pharmacokinetics , Prescription Drugs/pharmacokinetics , Animals , Drug Interactions , Humans , Illicit Drugs/adverse effects , Illicit Drugs/pharmacology , Prescription Drugs/adverse effects , Prescription Drugs/pharmacology , Substance-Related Disorders/metabolism
17.
Oncogene ; 39(11): 2305-2327, 2020 03.
Article En | MEDLINE | ID: mdl-31844250

High-grade gliomas (HGG) afflict both children and adults and respond poorly to current therapies. Epigenetic regulators have a role in gliomagenesis, but a broad, functional investigation of the impact and role of specific epigenetic targets has not been undertaken. Using a two-step, in vitro/in vivo epigenomic shRNA inhibition screen, we determine the chromatin remodeler BPTF to be a key regulator of adult HGG growth. We then demonstrate that BPTF knockdown decreases HGG growth in multiple pediatric HGG models as well. BPTF appears to regulate tumor growth through cell self-renewal maintenance, and BPTF knockdown leads these glial tumors toward more neuronal characteristics. BPTF's impact on growth is mediated through positive effects on expression of MYC and MYC pathway targets. HDAC inhibitors synergize with BPTF knockdown against HGG growth. BPTF inhibition is a promising strategy to combat HGG through epigenetic regulation of the MYC oncogenic pathway.

18.
Mol Cancer Ther ; 19(2): 540-551, 2020 02.
Article En | MEDLINE | ID: mdl-31594826

High-grade glioma (HGG) is the leading cause of cancer-related death among children. Selinexor, an orally bioavailable, reversible inhibitor of the nuclear export protein, exportin 1, is in clinical trials for a range of cancers, including HGG. It inhibits the NF-κB pathway and strongly induces the expression of nerve growth factor receptor (NGFR) in preclinical cancer models. We hypothesized that selinexor inhibits NF-κB via upregulation of NGFR. In HGG cells, sensitivity to selinexor correlated with increased induction of cell surface NGFR expression. Knocking down NGFR in HGG cells increased proliferation, anchorage-independent growth, stemness markers, and levels of transcriptionally available nuclear NF-κB not bound to IκB-α, while decreasing apoptosis and sensitivity to selinexor. Increasing IκB-α levels in NGFR knockdown cells restored sensitivity to selinexor. Overexpression of NGFR using cDNA reduced levels of free nuclear NF-κB, decreased stemness markers, and increased markers of cellular differentiation. In all HGG lines tested, selinexor decreased phosphorylation of NF-κB at serine 536 (a site associated with increased transcription of proliferative and inflammatory genes). Because resistance to selinexor monotherapy occurred in our in vivo model, we screened selinexor with a panel of FDA-approved anticancer agents. Bortezomib, a proteasome inhibitor that inhibits the NF-κB pathway through a different mechanism than selinexor, showed synergy with selinexor against HGG in vitro Our results help elucidate selinexor's mechanism of action and identify NGFR as a potential biomarker of its effect in HGG and in addition suggest a combination therapy strategy for these challenging tumors.


Glioma/genetics , Karyopherins/therapeutic use , NF-kappa B/metabolism , Receptors, Cytoplasmic and Nuclear/therapeutic use , Receptors, Nerve Growth Factor/metabolism , Humans , Karyopherins/pharmacology , Neoplasm Grading , Receptors, Cytoplasmic and Nuclear/pharmacology , Transfection , Exportin 1 Protein
19.
Oncol Rep ; 39(2): 455-464, 2018 Feb.
Article En | MEDLINE | ID: mdl-29207163

Diffuse intrinsic pontine glioma (DIPG) is an incurable childhood brain tumor. The mechanistic target of rapamycin (MTOR), a key oncogene, functions as two distinct signaling complexes, MTORC1 and MTORC2. We set out to determine the preclinical efficacy and mechanism of action of MTOR inhibitors in DIPG. We evaluated the MTORC1 inhibitor everolimus and the MTORC1/2 inhibitor AZD2014 in three patient-derived DIPG cell lines using cell culture models. We created dose-response curves for both compounds. We measured phenotypic effects on cell self-renewal, apoptosis, cell cycle, differentiation, senescence, and autophagy. We assessed the effects of each compound on the AKT pathway. Finally, we measured the efficacy of AZD2014 in combination with radiation therapy (RT) and a panel of FDA-approved chemotherapy drugs. While everolimus showed minimal antitumor efficacy, AZD2014 revealed IC50 levels of 410-552 nM and IC90 levels of 1.30-8.86 µM in the three cell lines. AZD2014 demonstrated increased inhibition of cell self-renewal compared to everolimus. AZD2014 decreased expression of phospho-AKT, while no such effect was noted with everolimus. Direct AKT inhibition showed similar efficacy to AZD2014, and induction of constitutive AKT activity rescued DIPG cells from the effects of AZD2014. AZD2014 exhibited synergistic relationships with both RT and various chemotherapy agents across classes, including the multikinase inhibitor ponatinib. MTORC1/2 inhibition shows antitumor activity in cell culture models of DIPG due to the effect of MTORC2 inhibition on AKT. This strategy should be further assessed for potential incorporation into combinatorial approaches to the treatment of DIPG.


Antineoplastic Agents/pharmacology , Brain Stem Neoplasms/metabolism , Everolimus/pharmacology , Glioma/metabolism , Morpholines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Benzamides , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/radiotherapy , Cell Culture Techniques , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Glioma/drug therapy , Glioma/genetics , Glioma/radiotherapy , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Phosphorylation/drug effects , Phosphorylation/radiation effects , Pyrimidines
20.
Cancer Lett ; 376(1): 118-26, 2016 06 28.
Article En | MEDLINE | ID: mdl-27012188

Overexpression of ATP-binding cassette transporter (ABC) subfamily G2 in cancer cells is known to elicit a MDR phenotype, ultimately resulting in cancer chemotherapy failure. Here, we report, for the first time, the effect of eight novel pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline (IND) derivatives that inhibit ABCG2 transporter restoring cancer cell chemosensitivity. IND -4, -5, -6, -7, and -8, at 10 µM, and nilotinib at 5 µM, significantly potentiated (8-10 fold) the cytotoxicity of the ABCG2 substrates mitoxantrone (MX) and doxorubicin in HEK293 cells overexpressing ABCG2 transporter, MX (~14 fold) in MX-resistant NCI-H460/MX-20 small cell lung cancer, and of topotecan (~7 fold) in S1-M1-80 colon cancer cells which all stably expressing ABCG2. In contrast, cytotoxicity of cisplatin, which is not an ABCG2 substrate, was not altered. IND-5,-6,-7, and -8 significantly increased the accumulation of rhodamine-123 in multidrug resistant NCI-H460/MX-20 cells overexpressing ABCG2. Both IND-7 and -8, the most potent ABCG2 inhibitors, had the highest affinities for the binding sites of ABCG2 in modeling studies. In conclusion, the beneficial actions of new class of agents warrant further development as potential MDR reversal agents for clinical anticancer agents that suffer from ABCG2-mediated MDR insensitivity.


ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Pyrazoles/pharmacology , Quinolines/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Binding Sites , Cell Survival/drug effects , Cisplatin/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Cytochrome P-450 CYP3A/genetics , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Enzyme Induction , HEK293 Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Mitoxantrone/pharmacology , Molecular Docking Simulation , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Pregnane X Receptor , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrimidines/pharmacology , Quinolines/chemical synthesis , Quinolines/metabolism , Receptors, Steroid/agonists , Receptors, Steroid/genetics , Structure-Activity Relationship , Transfection
...