Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Haematologica ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38572562

Azacitidine/venetoclax is an active regimen in patients with newly diagnosed AML. However, primary or secondary resistance to azacitidine/venetoclax is an area of unmet need and overexpression of MCL-1 is suggested to be a potential resistance mechanism. Pevonedistat inhibits MCL-1 through activation of NOXA, and pevonedistat/azacitidine has previously shown activity in AML. To assess the tolerability and efficacy of adding pevonedistat to azacitidine/venetoclax in relapsed/refractory AML, we conducted a phase I multicenter openlabel study in 16 adults with relapsed/refractory AML. Patients were treated with azacitidine, venetoclax along with pevonedistat intravenously on days 1, 3 and 5 of each 28-day cycle at 10, 15 or 20 mg/m2 in successive cohorts in the dose escalation phase. The impact of treatment on protein neddylation as well as expression of pro-apoptotic BCL2 family members was assessed. The recommended phase II dose of pevonedistat was 20 mg/m2. Grade 3 or higher adverse events included neutropenia (31%), thrombocytopenia (13%), febrile neutropenia (19%), anemia (19%), hypertension (19%) and sepsis (19%). The overall response rate was 46.7% for the whole cohort including complete remission (CR) in 5 of 7 (71.4%) patients who were naïve to the hypomethylating agent/venetoclax. No measurable residual disease (MRD) was detected in 80.0% of the patients who achieved CR. The median time to best response was 50 (range: 23 - 77) days. Four patients were bridged to allogeneic stem cell transplantation. The combination of azacitidine, venetoclax and pevonedistat is safe and shows encouraging preliminary activity in patients with relapsed/refractory AML. (NCT04172844).

2.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538744

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


AMP-Activated Protein Kinases , Aniline Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Pyrimidines , Sulfonamides , bcl-X Protein , Humans , Animals , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Mice , bcl-X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Phosphorylation/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Drug Synergism
3.
Cancer Med ; 12(23): 21229-21239, 2023 12.
Article En | MEDLINE | ID: mdl-37960985

BACKGROUND: Despite recent approval of several new agents, relapsed acute lymphoblastic leukemia (ALL) remains challenging to treat. Sapanisertib (MLN0128/TAK-228) is an oral TORC1/2 inhibitor that exhibited preclinical activity against ALL. METHODS: We conducted a single-arm multi-center Phase II study of sapanisertib monotherapy (3 mg orally daily of the milled formulation for 21 days every 28 days) in patients with ALL through the Experimental Therapeutics Clinical Trials Network (NCI-9775). RESULTS: Sixteen patients, 15 of whom were previously treated (median 3 prior lines of therapy), were enrolled. Major grade 3-4 non-hematologic toxicities included mucositis (3 patients) and hyperglycemia (2 patients) as well as hepatic failure, seizures, confusion, pneumonitis, and anorexia (1 patient each). Grade >2 hematological toxicity included leukopenia (3), lymphopenia (2), thrombocytopenia, and neutropenia (1). The best response was stable disease in 2 patients (12.5%), while only 3 patients (19%) were able to proceed to Cycle 2. Pharmacokinetic analysis demonstrated drug exposures similar to those observed in solid tumor patients. Immunoblotting in serially collected samples indicated limited impact of treatment on phosphorylation of mTOR pathway substrates such as 4EBP1, S6, and AKT. CONCLUSION: In summary, single-agent sapanisertib had a good safety profile but limited target inhibition or efficacy in ALL as a single agent. This trial was registered at ClinicalTrials.gov as NCT02484430.


Benzoxazoles , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
4.
Cell Death Differ ; 30(3): 794-808, 2023 03.
Article En | MEDLINE | ID: mdl-36376382

How BAK and BAX induce mitochondrial outer membrane (MOM) permeabilization (MOMP) during apoptosis is incompletely understood. Here we have used molecular dynamics simulations, surface plasmon resonance, and assays for membrane permeabilization in vitro and in vivo to assess the structure and function of selected BAK subdomains and their derivatives. Results of these studies demonstrate that BAK helical regions α5 and α6 bind the MOM lipid cardiolipin. While individual peptides corresponding to these helical regions lack the full biological activity of BAK, tandem peptides corresponding to α4-α5, α5-α6, or α6-α7/8 can localize exogenous proteins to mitochondria, permeabilize liposomes composed of MOM lipids, and cause MOMP in the absence of the remainder of the BAK protein. Importantly, the ability of these tandem helices to induce MOMP under cell-free conditions is diminished by mutations that disrupt the U-shaped helix-turn-helix structure of the tandem peptides or decrease their lipid binding. Likewise, BAK-induced apoptosis in intact cells is diminished by CLS1 gene interruption, which decreases mitochondrial cardiolipin content, or by BAK mutations that disrupt the U-shaped tandem peptide structure or diminish lipid binding. Collectively, these results suggest that BAK structural rearrangements during apoptosis might mobilize helices involved in specific protein-lipid interactions that are critical for MOMP.


Cardiolipins , Cytochromes c , Cytochromes c/metabolism , Cardiolipins/metabolism , bcl-2-Associated X Protein/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Apoptosis , bcl-2 Homologous Antagonist-Killer Protein/metabolism
5.
Cancers (Basel) ; 13(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34885153

The poly(ADP-ribose) binding protein CHFR regulates cellular responses to mitotic stress. The deubiquitinase UBC13, which regulates CHFR levels, has been associated with better overall survival in paclitaxel-treated ovarian cancer. Despite the extensive use of taxanes in the treatment of ovarian cancer, little is known about expression of CHFR itself in this disease. In the present study, tissue microarrays containing ovarian carcinoma samples from 417 women who underwent initial surgical debulking were stained with anti-CHFR antibody and scored in a blinded fashion. CHFR levels, expressed as a modified H-score, were examined for association with histology, grade, time to progression (TTP) and overall survival (OS). In addition, patient-derived xenografts from 69 ovarian carcinoma patients were examined for CHFR expression and sensitivity to paclitaxel monotherapy. In clinical ovarian cancer specimens, CHFR expression was positively associated with serous histology (p = 0.0048), higher grade (p = 0.000014) and higher stage (p = 0.016). After correction for stage and debulking, there was no significant association between CHFR staining and overall survival (p = 0.62) or time to progression (p = 0.91) in patients with high grade serous cancers treated with platinum/taxane chemotherapy (N = 249). Likewise, no association between CHFR expression and paclitaxel sensitivity was observed in ovarian cancer PDXs treated with paclitaxel monotherapy. Accordingly, differences in CHFR expression are unlikely to play a major role in paclitaxel sensitivity of high grade serous ovarian cancer.

6.
Cell Death Dis ; 12(11): 977, 2021 10 21.
Article En | MEDLINE | ID: mdl-34675185

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.


Fatty Acid Synthases/metabolism , Mitochondria/metabolism , Neoplasms/genetics , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Transfection
7.
NAR Cancer ; 3(3): zcab028, 2021 Sep.
Article En | MEDLINE | ID: mdl-34316715

Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.

8.
Cancer Res ; 81(10): 2666-2678, 2021 05 15.
Article En | MEDLINE | ID: mdl-33414171

Although inhibitors of the kinases CHK1, ATR, and WEE1 are undergoing clinical testing, it remains unclear how these three classes of agents kill susceptible cells and whether they utilize the same cytotoxic mechanism. Here we observed that CHK1 inhibition induces apoptosis in a subset of acute leukemia cell lines in vitro, including TP53-null acute myeloid leukemia (AML) and BCR/ABL-positive acute lymphoid leukemia (ALL), and inhibits leukemic colony formation in clinical AML samples ex vivo. In further studies, downregulation or inhibition of CHK1 triggered signaling in sensitive human acute leukemia cell lines that involved CDK2 activation followed by AP1-dependent TNF transactivation, TNFα production, and engagement of a TNFR1- and BID-dependent apoptotic pathway. AML lines that were intrinsically resistant to CHK1 inhibition exhibited high CHK1 expression and were sensitized by CHK1 downregulation. Signaling through this same CDK2-AP1-TNF cytotoxic pathway was also initiated by ATR or WEE1 inhibitors in vitro and during CHK1 inhibitor treatment of AML xenografts in vivo. Collectively, these observations not only identify new contributors to the antileukemic cell action of CHK1, ATR, and WEE1 inhibitors, but also delineate a previously undescribed pathway leading from aberrant CDK2 activation to death ligand-induced killing that can potentially be exploited for acute leukemia treatment. SIGNIFICANCE: This study demonstrates that replication checkpoint inhibitors can kill AML cells through a pathway involving AP1-mediated TNF gene activation and subsequent TP53-independent, TNFα-induced apoptosis, which can potentially be exploited clinically.


Cyclin-Dependent Kinase 2/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrazines/pharmacology , Pyrazoles/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis , Cell Proliferation , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/genetics , Xenograft Model Antitumor Assays
9.
Sci Rep ; 9(1): 3617, 2019 03 05.
Article En | MEDLINE | ID: mdl-30837643

CPX-351 is a liposomally encapsulated 5:1 molar ratio of cytarabine and daunorubicin that recently received regulatory approval for the treatment of therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes based on improved overall survival compared to standard cytarabine/daunorubicin therapy. Checkpoint kinase 1 (CHK1), which is activated by DNA damage and replication stress, diminishes sensitivity to cytarabine and anthracyclines as single agents, suggesting that CHK1 inhibitors might increase the effectiveness of CPX-351. The present studies show that CPX-351 activates CHK1 as well as the S and G2/M cell cycle checkpoints. Conversely, CHK1 inhibition diminishes the cell cycle effects of CPX-351. Moreover, CHK1 knockdown or addition of a CHK1 inhibitor such as MK-8776, rabusertib or prexasertib enhances CPX-351-induced apoptosis in multiple TP53-null and TP53-wildtype AML cell lines. Likewise, CHK1 inhibition increases the antiproliferative effect of CPX-351 on primary AML specimens ex vivo, offering the possibility that CPX-351 may be well suited to combine with CHK1-targeted agents.


Apoptosis , Checkpoint Kinase 1/antagonists & inhibitors , Cytarabine/pharmacology , Daunorubicin/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/pathology , Protein Kinase Inhibitors/pharmacology , Cell Proliferation , Humans , In Vitro Techniques , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/enzymology , Tumor Cells, Cultured
10.
Gynecol Oncol ; 153(1): 127-134, 2019 04.
Article En | MEDLINE | ID: mdl-30686551

OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting. METHODS: Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA. RESULTS: 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (r = 0.050; p = 0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (r = -0.69, p = 0.004). CONCLUSION: Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.


Benzamides/administration & dosage , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Sulfonamides/administration & dosage , Tumor Suppressor p53-Binding Protein 1/genetics , Cell Line, Tumor , DNA Repair , Drug Resistance, Neoplasm , Female , Genes, BRCA1 , Genes, BRCA2 , Homologous Recombination , Humans , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/biosynthesis , Poly (ADP-Ribose) Polymerase-1/genetics , Tumor Suppressor p53-Binding Protein 1/biosynthesis , Tumor Suppressor p53-Binding Protein 1/deficiency
11.
Clin Cancer Res ; 24(4): 744-752, 2018 02 15.
Article En | MEDLINE | ID: mdl-29138343

Purpose: To determine the dose limiting toxicities (DLT), maximum tolerated dose (MTD), and recommended phase II dose (RP2D) of veliparib in combination with weekly topotecan in patients with solid tumors. Correlative studies were included to assess the impact of topotecan and veliparib on poly(ADP-ribose) levels in peripheral blood mononuclear cells, serum pharmacokinetics of both agents, and potential association of germline repair gene mutations with outcome.Experimental Design: Eligible patients had metastatic nonhematologic malignancies with measurable disease. Using a 3 + 3 design, patients were treated with veliparib orally twice daily on days 1-3, 8-10, and 15-17 and topotecan intravenously on days 2, 9, and 16 every 28 days. Tumor responses were assessed by RECIST.Results: Of 58 patients enrolled, 51 were evaluable for the primary endpoint. The MTD and RP2D was veliparib 300 mg twice daily on days 1-3, 8-10, and 15-17 along with topotecan 3 mg/m2 on days 2, 9, and 16 of a 28-day cycle. DLTs were grade 4 neutropenia lasting >5 days. The median number of cycles was 2 (1-26). The objective response rate was 10%, with 1 complete and 4 partial responses. Twenty-two patients (42%) had stable disease ranging from 4 to 26 cycles. Patients with germline BRCA1, BRCA2, or RAD51D mutations remained on study longer than those without homologous recombination repair (HRR) gene mutations (median 4 vs. 2 cycles).Conclusions: Weekly topotecan in combination with veliparib has a manageable safety profile and appears to warrant further investigation. Clin Cancer Res; 24(4); 744-52. ©2017 AACR.


Neoplasms/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols , Area Under Curve , Benzimidazoles/administration & dosage , Benzimidazoles/adverse effects , Benzimidazoles/pharmacokinetics , Disease-Free Survival , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Germ-Line Mutation , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Neoplasms/genetics , Neoplasms/metabolism , Neutropenia/chemically induced , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Topotecan/administration & dosage , Topotecan/adverse effects , Topotecan/pharmacokinetics
12.
Nucleic Acids Res ; 45(8): 4564-4576, 2017 05 05.
Article En | MEDLINE | ID: mdl-28199696

Germline mutations in SPRTN cause Ruijs-Aalfs syndrome (RJALS), a disorder characterized by genome instability, progeria and early onset hepatocellular carcinoma. Spartan, the protein encoded by SPRTN, is a nuclear metalloprotease that is involved in the repair of DNA-protein crosslinks (DPCs). Although Sprtn hypomorphic mice recapitulate key progeroid phenotypes of RJALS, whether this model expressing low amounts of Spartan is prone to DPC repair defects and spontaneous tumors is unknown. Here, we showed that the livers of Sprtn hypomorphic mice accumulate DPCs containing Topoisomerase 1 covalently linked to DNA. Furthermore, these mice exhibited DNA damage, aneuploidy and spontaneous tumorigenesis in the liver. Collectively, these findings provide evidence that partial loss of Spartan impairs DPC repair and tumor suppression.


Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Chromosomal Proteins, Non-Histone/deficiency , DNA Topoisomerases, Type I/genetics , Liver Neoplasms/genetics , Progeria/genetics , Aneuploidy , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Chromosomal Proteins, Non-Histone/genetics , DNA Adducts/genetics , DNA Adducts/metabolism , DNA Topoisomerases, Type I/metabolism , DNA-Binding Proteins , Disease Models, Animal , Female , Gene Expression , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Knockout , Progeria/metabolism , Progeria/pathology , Proteolysis , Syndrome
13.
Gynecol Oncol ; 143(2): 379-388, 2016 Nov.
Article En | MEDLINE | ID: mdl-27614696

OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo. METHODS: Massively parallel sequencing was performed on HGSOCs to identify mutations contributing to HR deficiency. HR pathway integrity was assessed using fluorescence microscopy-based RAD51 focus formation assays. Effects of niraparib (MK-4827) on treatment-naïve PDX tumor growth as monotherapy, in combination with carboplatin/paclitaxel, and as maintenance therapy were assessed by transabdominal ultrasound. Niraparib responses were correlated with changes in levels of poly(ADP-ribose), PARP1, and repair proteins by western blotting. RESULTS: Five PDX models were evaluated in vivo. Tumor regressions were induced by single-agent niraparib in one of two PDX models with deleterious BRCA2 mutations and in a PDX with RAD51C promoter methylation. Diminished formation of RAD51 foci failed to predict response, but Artemis loss was associated with resistance. Niraparib generally failed to enhance responses to carboplatin/paclitaxel chemotherapy, but maintenance niraparib therapy delayed progression in a BRCA2-deficient PDX. CONCLUSIONS: Mutations in HR genes are neither necessary nor sufficient to predict response to niraparib. Assessment of repair status through multiple complementary assays is needed to guide PARP inhibitor therapy, design future clinical trials and identify ovarian cancer patients most likely to benefit from PARP inhibition.


Homologous Recombination , Indazoles/therapeutic use , Ovarian Neoplasms/drug therapy , Piperidines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , Female , Genes, BRCA2 , Humans , Ovarian Neoplasms/genetics , Promoter Regions, Genetic
14.
Org Biomol Chem ; 14(17): 4103-9, 2016 Apr 26.
Article En | MEDLINE | ID: mdl-27113574

The topoisomerase (topo) I-DNA covalent complex represents an attractive target for developing diagnostic antibodies to measure responsiveness to drugs. We report a new antigen, peptide , and four murine monoclonal antibodies raised against that exhibit excellent specificity for recognition of in comparison to structurally similar peptides by enzyme-linked immunosorbent assays. Although topo I-DNA complex detection was not achieved in cellular samples by these new antibodies, a new strategy for antigen design is reported.


Antibodies, Monoclonal/chemistry , Antigens/chemistry , DNA Topoisomerases, Type I/chemistry , DNA/chemistry , Nucleotides/chemistry , Peptides/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Antigen-Antibody Reactions , Antigens/immunology , Cell Line, Tumor , DNA Topoisomerases, Type I/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Molecular Structure , Nucleotides/chemical synthesis , Peptides/chemical synthesis
15.
Clin Cancer Res ; 22(15): 3894-902, 2016 08 01.
Article En | MEDLINE | ID: mdl-26979391

PURPOSE: DNA repair defects have been previously reported in myeloproliferative neoplasms (MPN). Inhibitors of PARP have shown activity in solid tumors with defects in homologous recombination (HR). This study was performed to assess MPN sensitivity to PARP inhibitors ex vivo EXPERIMENTAL DESIGN: HR pathway integrity in circulating myeloid cells was evaluated by assessing the formation of RAD51 foci after treatment with ionizing radiation or PARP inhibitors. Sensitivity of MPN erythroid and myeloid progenitors to PARP inhibitors was evaluated using colony formation assays. RESULTS: Six of 14 MPN primary samples had reduced formation of RAD51 foci after exposure to ionizing radiation, suggesting impaired HR. This phenotype was not associated with a specific MPN subtype, JAK2 mutation status, or karyotype. MPN samples showed increased sensitivity to the PARP inhibitors veliparib and olaparib compared with normal myeloid progenitors. This hypersensitivity, which was most pronounced in samples deficient in DNA damage-induced RAD51 foci, was observed predominantly in samples from patients with diagnoses of chronic myelogenous leukemia, chronic myelomonocytic leukemia, or unspecified myelodysplastic/MPN overlap syndromes. CONCLUSIONS: Like other neoplasms with HR defects, MPNs exhibit PARP inhibitor hypersensitivity compared with normal marrow. These results suggest that further preclinical and possibly clinical study of PARP inhibitors in MPNs is warranted. Clin Cancer Res; 22(15); 3894-902. ©2016 AACR.


Antineoplastic Agents/adverse effects , Drug Hypersensitivity/etiology , Myeloproliferative Disorders/complications , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , Benzimidazoles/adverse effects , Benzimidazoles/pharmacology , DNA Damage , DNA Methylation , DNA Repair , Drug Tolerance/genetics , Genomics/methods , Humans , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
16.
Blood ; 127(22): 2711-22, 2016 06 02.
Article En | MEDLINE | ID: mdl-26917778

The mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and apoptosis, has been extensively evaluated as a therapeutic target in multiple malignancies. Rapamycin analogs, which partially inhibit mTOR complex 1 (mTORC1), exhibit immunosuppressive and limited antitumor activity, but sometimes activate survival pathways through feedback mechanisms involving mTORC2. Thus, attention has turned to agents targeting both mTOR complexes by binding the mTOR active site. Here we show that disruption of either mTOR-containing complex is toxic to acute lymphocytic leukemia (ALL) cells and identify 2 previously unrecognized pathways leading to this cell death. Inhibition of mTORC1-mediated 4EBP1 phosphorylation leads to decreased expression of c-MYC and subsequent upregulation of the proapoptotic BCL2 family member PUMA, whereas inhibition of mTORC2 results in nuclear factor-κB-mediated expression of the Early Growth Response 1 (EGR1) gene, which encodes a transcription factor that binds and transactivates the proapoptotic BCL2L11 locus encoding BIM. Importantly, 1 or both pathways contribute to death of malignant lymphoid cells after treatment with dual mTORC1/mTORC2 inhibitors. Collectively, these observations not only provide new insight into the survival roles of mTOR in lymphoid malignancies, but also identify alterations that potentially modulate the action of mTOR dual inhibitors in ALL.


Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11/metabolism , Early Growth Response Protein 1/metabolism , Enzyme Inhibitors/pharmacology , NF-kappa B/metabolism , Phosphoproteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Humans , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors
17.
Nucleic Acids Res ; 44(6): 2816-26, 2016 Apr 07.
Article En | MEDLINE | ID: mdl-26917015

A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.


Antibodies, Monoclonal/biosynthesis , Antineoplastic Agents, Phytogenic/pharmacology , DNA Topoisomerases, Type I/genetics , DNA/genetics , Gene Expression Regulation, Neoplastic , Topoisomerase I Inhibitors/pharmacology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Apoptosis/drug effects , Benzodioxoles/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Topoisomerases, Type I/metabolism , HCT116 Cells , Histones/genetics , Histones/metabolism , Humans , Isoquinolines/pharmacology , K562 Cells , Mice , Molecular Sequence Data , Protein Binding/drug effects , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Sequence Alignment , Structure-Activity Relationship , Topotecan/pharmacology
18.
J Biol Chem ; 289(30): 20543-58, 2014 Jul 25.
Article En | MEDLINE | ID: mdl-24895135

Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation.


Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Receptors, TNF-Related Apoptosis-Inducing Ligand/biosynthesis , fas Receptor/biosynthesis , Humans , K562 Cells , Neoplasms/genetics , Neoplasms/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Response Elements , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , fas Receptor/genetics
19.
Mol Pharmacol ; 85(5): 723-34, 2014 May.
Article En | MEDLINE | ID: mdl-24569089

Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more complicated than previously recognized.


Antineoplastic Agents/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Indazoles/pharmacology , Indoles/pharmacology , Poisons/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/metabolism , Cell Line, Tumor , Drug Synergism , HCT116 Cells , Heterocyclic Compounds, 3-Ring/metabolism , Humans , Indazoles/metabolism , Indoles/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Poisons/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/metabolism
20.
Haematologica ; 99(4): 688-96, 2014 Apr.
Article En | MEDLINE | ID: mdl-24179152

Novel combinations targeting new molecular vulnerabilities are needed to improve the outcome of patients with acute myeloid leukemia. We recently identified WEE1 kinase as a novel target in leukemias. To identify genes that are synthetically lethal with WEE1 inhibition, we performed a short interfering RNA screen directed against cell cycle and DNA repair genes during concurrent treatment with the WEE1 inhibitor MK1775. CHK1 and ATR, genes encoding two replication checkpoint kinases, were among the genes whose silencing enhanced the effects of WEE1 inhibition most, whereas CDK2 short interfering RNA antagonized MK1775 effects. Building on this observation, we examined the impact of combining MK1775 with selective small molecule inhibitors of CHK1, ATR and cyclin-dependent kinases. The CHK1 inhibitor MK8776 sensitized acute myeloid leukemia cell lines and primary leukemia specimens to MK1775 ex vivo, whereas smaller effects were observed with the MK1775/MK8776 combination in normal myeloid progenitors. The ATR inhibitor VE-821 likewise enhanced the antiproliferative effects of MK1775, whereas the cyclin-dependent kinase inhibitor roscovitine antagonized MK1775. Further studies showed that MK8776 enhanced MK1775-mediated activation of the ATR/CHK1 pathway in acute leukemia cell lines and ex vivo. These results indicate that combined cell cycle checkpoint interference with MK1775/MK8776 warrants further investigation as a potential treatment for acute myeloid leukemia.


Cell Cycle Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinases/genetics , Protein-Tyrosine Kinases/genetics , Apoptosis/drug effects , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1 , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Profiling , Gene Silencing , Humans , Leukemia, Myeloid, Acute/drug therapy , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction , Tumor Stem Cell Assay
...