Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(15)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900587

RESUMEN

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-ß1-activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-ß1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.


Asunto(s)
Ciclofilinas , Animales , Humanos , Ratones , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Colágeno Tipo I/metabolismo , Fibrosis , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Lactonas , Compuestos de Espiro
2.
Cell Chem Biol ; 31(6): 1162-1175.e10, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38320555

RESUMEN

Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Ligandos , Estructura Molecular , Células HEK293
3.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945535

RESUMEN

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis by myofibroblasts have clinical potential as anti-fibrotic agents. Lysine hydroxylation by the prolyl-3-hydroxylase complex, comprised of cartilage associated protein, prolyl 3-hydroxylase 1, and cyclophilin B, is essential for collagen type I crosslinking and formation of stable fibers. Here, we identify the collagen chaperone cyclophilin B as a major cellular target of the macrocyclic natural product sanglifehrin A (SfA) using photo-affinity labeling and chemical proteomics. Our studies reveal a unique mechanism of action in which SfA binding to cyclophilin B in the endoplasmic reticulum (ER) induces the secretion of cyclophilin B to the extracellular space, preventing TGF-ß1-activated myofibroblasts from synthesizing collagen type I in vitro without inhibiting collagen type I mRNA transcription or inducing ER stress. In addition, SfA prevents collagen type I secretion without affecting myofibroblast contractility or TGF-ß1 signaling. In vivo, we provide chemical, molecular, functional, and translational evidence that SfA mitigates the development of lung and skin fibrosis in mouse models by inducing cyclophilin B secretion, thereby inhibiting collagen synthesis from fibrotic fibroblasts in vivo . Consistent with these findings in preclinical models, SfA reduces collagen type I secretion from fibrotic human lung fibroblasts and precision cut lung slices from patients with idiopathic pulmonary fibrosis, a fatal fibrotic lung disease with limited therapeutic options. Our results identify the primary liganded target of SfA in cells, the collagen chaperone cyclophilin B, as a new mechanistic target for the treatment of organ fibrosis.

4.
Nature ; 610(7933): 775-782, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261529

RESUMEN

The ubiquitin E3 ligase substrate adapter cereblon (CRBN) is a target of thalidomide and lenalidomide1, therapeutic agents used in the treatment of haematopoietic malignancies2-4 and as ligands for targeted protein degradation5-7. These agents are proposed to mimic a naturally occurring degron; however, the structural motif recognized by the thalidomide-binding domain of CRBN remains unknown. Here we report that C-terminal cyclic imides, post-translational modifications that arise from intramolecular cyclization of glutamine or asparagine residues, are physiological degrons on substrates for CRBN. Dipeptides bearing the C-terminal cyclic imide degron substitute for thalidomide when embedded within bifunctional chemical degraders. Addition of the degron to the C terminus of proteins induces CRBN-dependent ubiquitination and degradation in vitro and in cells. C-terminal cyclic imides form adventitiously on physiologically relevant timescales throughout the human proteome to afford a degron that is endogenously recognized and removed by CRBN. The discovery of the C-terminal cyclic imide degron defines a regulatory process that may affect the physiological function and therapeutic engagement of CRBN.


Asunto(s)
Imidas , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa , Humanos , Asparagina/química , Dipéptidos/farmacología , Glutamina/química , Imidas/química , Imidas/metabolismo , Lenalidomida/farmacología , Ligandos , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/metabolismo , Talidomida/farmacología , Ubiquitinación/efectos de los fármacos , Secuencias de Aminoácidos , Ciclización
5.
J Am Chem Soc ; 144(1): 606-614, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978798

RESUMEN

The thalidomide analogue lenalidomide (Len) is a clinical therapeutic that alters the substrate engagement of cereblon (CRBN), a substrate receptor for the CRL4 E3 ubiquitin ligase. Here, we report the development of photolenalidomide (pLen), a Len probe with a photoaffinity label and enrichment handle, designed for target identification by chemical proteomics. pLen preserves the substrate degradation profile, phenotypic antiproliferative and immunomodulatory properties of Len, and enhances interactions with the thalidomide-binding domain of CRBN, as revealed by binding site mapping and molecular modeling. Using pLen, we captured the known targets IKZF1 and CRBN from multiple myeloma MM.1S cells and further identified a new target, eukaryotic translation initiation factor 3 subunit i (eIF3i), from HEK293T cells. eIF3i is directly labeled by pLen and forms a ternary complex with CRBN in the presence of Len across several epithelial cell lines but is itself not ubiquitylated or degraded. These data point to the existence of a broader array of targets induced by ligands to CRBN that may or may not be degraded, which can be identified by the highly translatable application of pLen to additional biological systems.


Asunto(s)
Lenalidomida
6.
Angew Chem Int Ed Engl ; 60(31): 17045-17052, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34014025

RESUMEN

Sanglifehrin A and B are immunosuppressive macrocyclic natural products endowed with and differentiated by a unique spirocyclic lactam. Herein, we report an enantioselective total synthesis and biological evaluation of sanglifehrin A and B and analogs. Access to the spirocyclic lactam was achieved through convergent assembly of a key pyranone intermediate followed by a stereo-controlled spirocyclization. The 22-membered macrocyclic core was synthesized by ring-closing metathesis in the presence of 2,6-bis(trifluoromethyl) benzeneboronic acid (BFBB). The spirocyclic lactam and macrocycle fragments were united by a Stille coupling to furnish sanglifehrin A and B. Additional sanglifehrin B analogs with variation at the C40 position were additionally prepared. Biological evaluation revealed that the 2-CF3 analog of sanglifehrin B exhibited higher anti-proliferative activity than the natural products sanglifehrin A and B in Jurkat cells. Both natural products induced higher-order homodimerization of cyclophilin A (CypA), but only sanglifehrin A promoted CypA complexation with inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). The synthesis reported herein will enable further evaluation of the spirolactam and its contribution to sanglifehrin-dependent immunosuppressive activity.


Asunto(s)
Inmunosupresores/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Inmunosupresores/síntesis química , Inmunosupresores/química , Células Jurkat , Lactonas/síntesis química , Lactonas/química , Lactonas/farmacología , Estructura Molecular , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Estereoisomerismo
7.
Curr Protoc Chem Biol ; 11(4): e75, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31763793

RESUMEN

Identification and characterization of small molecule-protein interactions is critical to understanding the mechanism of action of bioactive small molecules. Photo-affinity labeling (PAL) enables the capture of noncovalent interactions for enrichment and unbiased analysis by mass spectrometry (MS). Quantitative proteomics of the enriched proteome reveals potential interactions, and MS characterization of binding sites provides validation and structural insight into the interactions. Here, we describe the identification of the protein targets and binding sites of a small molecule using small molecule interactome mapping by PAL (SIM-PAL). Cells are exposed to a diazirine-alkyne-functionalized small molecule, and binding interactions are covalently captured upon UV irradiation. An isotopically coded, acid-cleavable biotin azide handle is attached to the conjugated proteins using copper-catalyzed azide-alkyne cycloaddition. Biotin-labeled proteins are enriched for on-bead digestion and quantitative proteomics. Acid cleavage of the handle releases the bead-bound conjugated peptides for MS analysis and isotope-directed assignment of the binding site. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of a small molecule-conjugated protein sample following treatment of live cells Alternate Protocol: Generation of a small molecule-conjugated protein sample following treatment of cell lysate Basic Protocol 2: Copper-catalyzed azide-alkyne cycloaddition functionalization and enrichment of labeled peptides Support Protocol 1: Synthesis of acid-cleavable, isotopically coded biotin picolyl azide handle Support Protocol 2: Monitoring enrichment by immunoblotting Basic Protocol 3: Mass spectrometry analysis to identify interacting proteins and conjugation sites.


Asunto(s)
Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Alquinos/química , Alquinos/metabolismo , Azidas/química , Azidas/metabolismo , Sitios de Unión , Biotinilación , Catálisis , Línea Celular , Reacción de Cicloadición , Humanos , Espectrometría de Masas/métodos , Unión Proteica , Proteínas/química , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Bibliotecas de Moléculas Pequeñas/química , Coloración y Etiquetado , Rayos Ultravioleta
8.
ACS Chem Biol ; 14(12): 2527-2532, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31650837

RESUMEN

The coxibs are a subset of nonsteroidal anti-inflammatory drugs (NSAIDs) that primarily target cyclooxygenase-2 (COX-2) to inhibit prostaglandin signaling and reduce inflammation. However, mechanisms to inhibit other members of the prostaglandin signaling pathway may improve selectivity and reduce off-target toxicity. Here, we report a novel binding site for celecoxib on prostaglandin E synthase (PTGES), which is an enzyme downstream of COX-2 in the prostaglandin signaling pathway, using a cleavable chelation-assisted biotin probe 6. Evaluation of the multifunctional probe 6 revealed significantly improved tagging efficiencies attributable to the embedded picolyl functional group. Application of the probe 6 within the small molecule interactome mapping by photoaffinity labeling (SIM-PAL) platform using photo-celecoxib as a reporter for celecoxib identified PTGES and other membrane proteins in the top eight enriched proteins from A549 cells. Four binding sites to photo-celecoxib were mapped by the probe 6, including a binding site with PTGES. The binding interaction with PTGES was validated by competitive displacement with celecoxib and licofelone, which is a known PTGES inhibitor, and was used to generate a structural model of the interaction. The identification of photo-celecoxib interactions with membrane proteins, including the direct binding site on the membrane protein PTGES, will inform further functional followup and the design of new selective inhibitors of the prostaglandin signaling pathway.


Asunto(s)
Biotina/química , Celecoxib/metabolismo , Quelantes/química , Inhibidores de la Ciclooxigenasa 2/metabolismo , Sondas Moleculares/química , Prostaglandina-E Sintasas/metabolismo , Sitios de Unión , Etiquetas de Fotoafinidad , Prostaglandinas/metabolismo , Transducción de Señal
9.
J Am Chem Soc ; 141(30): 11759-11764, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31309829

RESUMEN

Structural characterization of small molecule binding site hotspots within the global proteome is uniquely enabled by photoaffinity labeling (PAL) coupled with chemical enrichment and unbiased analysis by mass spectrometry (MS). MS-based binding site maps provide structural resolution of interaction sites in conjunction with identification of target proteins. However, binding site hotspot mapping has been confined to relatively simple small molecules to date; extension to more complex compounds would enable the structural definition of new binding modes in the proteome. Here, we extend PAL and MS methods to derive a binding site hotspot map for the immunosuppressant rapamycin, a complex macrocyclic natural product that forms a ternary complex with the proteins FKBP12 and FRB. Photo-rapamycin was developed as a diazirine-based PAL probe for rapamycin, and the FKBP12-photo-rapamycin-FRB ternary complex formed readily in vitro. Photoirradiation, digestion, and MS analysis of the ternary complex revealed a McLafferty rearrangement product of photo-rapamycin conjugated to specific surfaces on FKBP12 and FRB. Molecular modeling based on the binding site map revealed two distinct conformations of complex-bound photo-rapamycin, providing a 5.0 Å distance constraint between the conjugated residues and the diazirine carbon and a 9.0 Å labeling radius for the diazirine upon photoactivation. These measurements may be broadly useful in the interpretation of binding site measurements from PAL. Thus, in characterizing the ternary complex of photo-rapamycin by MS, we applied binding site hotspot mapping to a macrocyclic natural product and extracted precise structural measurements for interpretation of PAL products that may enable the discovery of new binding sites in the "undruggable" proteome.


Asunto(s)
Etiquetas de Fotoafinidad , Proteómica , Serina-Treonina Quinasas TOR/química , Sitios de Unión , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular , Serina-Treonina Quinasas TOR/metabolismo
10.
Biochemistry ; 57(2): 186-193, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29083874

RESUMEN

Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Bibliotecas de Moléculas Pequeñas , Aminoácidos/química , Sitios de Unión , Biotinilación , Marcaje Isotópico/métodos , Oxidación-Reducción , Etiquetas de Fotoafinidad , Unión Proteica , Relación Estructura-Actividad
11.
Biochemistry ; 56(43): 5726-5738, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28976190

RESUMEN

Human S100A7 (psoriasin) is a metal-chelating protein expressed by epithelial cells. It is a 22-kDa homodimer with two EF-hand domains per subunit and two transition-metal-binding His3Asp sites at the dimer interface. Each subunit contains two cysteine residues that can exist as free thiols (S100A7red) or as an intramolecular disulfide bond (S100A7ox). Herein, we examine the disulfide bond redox behavior, the Zn(II) binding properties, and the antibacterial activity of S100A7, as well as the effect of Ca(II) ions on these properties. In agreement with prior work [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039-13044], we show that apo S100A7ox is a substrate for the mammalian thioredoxin system; however, negligible reduction of the disulfide bond is observed for Ca(II)- and Zn(II)-bound S100A7ox. Furthermore, metal binding depresses the midpoint potential of the disulfide bond. S100A7ox and S100A7red each coordinate 2 equiv of Zn(II) with subnanomolar affinity in the absence and presence of Ca(II) ions, and the cysteine thiolates in S100A7red do not form a third high-affinity Zn(II) site. These results refute a prior model implicating the Cys thiolates of S100A7red in high-affinity Zn(II) binding [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039-13044]. S100A7ox and the disulfide-null variants show comparable Zn(II)-depletion profiles; however, only S100A7ox exhibits antibacterial activity against select bacterial species. Metal substitution experiments suggest that the disulfide bonds in S100A7 may enhance metal sequestration by the His3Asp sites and thereby confer growth inhibitory properties to S100A7ox.


Asunto(s)
Antibacterianos/química , Quelantes/química , Disulfuros/química , Multimerización de Proteína , Proteínas S100/química , Zinc/química , Antibacterianos/metabolismo , Quelantes/metabolismo , Humanos , Unión Proteica , Proteína A7 de Unión a Calcio de la Familia S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA