Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Environ Sci Technol ; 55(3): 1710-1720, 2021 02 02.
Article En | MEDLINE | ID: mdl-33426890

Elucidating the interactions between metal ions and dissolved organic matter and deciphering mechanisms for their mineralization in the aquatic environment are central to understanding the speciation, transport, and toxicity of nanoparticles (NPs). Herein, we examine the interactions between Ag+ and Au3+ ions in mixed solutions (χAg = 0.2, 0.5, and 0.8) in the presence of humic acids (HAs) under simulated sunlight; these conditions result in the formation of bimetallic Ag-Au NPs. A key distinction is that the obtained alloy NPs are compositionally and morphologically rather different from NPs obtained from thermally activated dark processes. Photoillumination triggers a distinctive plasmon-mediated process for HA-assisted reductive mineralization of ions to bimetallic alloy NPs which is not observed in its dark thermal reduction counterpart. The initial nucleation of bimetallic NPs is dominated by differences in the cohesive energies of Ag and Au crystal lattices, whereas the growth mechanisms are governed by the strongly preferred incorporation of Ag ions, which stems from their greater photoreactivity. The bimetallic NPs crystallize in shapes governed by the countervailing influence of minimizing free energy through the adoption of Wulff constructions and the energetic penalties associated with twin faults. As such, assessments of the stability and the potential toxic effects of bimetallic NPs arising from their possible existence in aquatic environments will depend sensitively on the origins of their formation.


Metal Nanoparticles , Silver , Alloys , Gold , Sunlight
2.
Nanoscale ; 11(44): 21354-21363, 2019 Nov 28.
Article En | MEDLINE | ID: mdl-31674612

Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO2 are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core-shell arrangement of VO2 and amorphous HfO2 promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched V2O3/HfO2 interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO2 under ambient conditions. Free-standing cubic HfO2, otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfV2O7. Variable temperature powder X-ray diffraction demonstrate that the prepared HfV2O7 exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds.

3.
Environ Sci Technol ; 52(13): 7269-7278, 2018 07 03.
Article En | MEDLINE | ID: mdl-29864275

Gold and silver nanoparticles can be stabilized endogenously within aquatic environments from dissolved ionic species as a result of mineralization induced by dissolved organic matter. However, the ability of fulvic and humic acids to stabilize bimetallic nanoparticles is entirely unexplored. Elucidating the formation of such particles is imperative given their potential ecological toxicity. Herein, we demonstrate the nucleation, growth, and stabilization of bimetallic Ag-Au nanocrystals from the interactions of Ag+ and Au3+ with Suwannee River fulvic and humic acids. The mechanisms underpinning the stabilization of Ag-Au alloy NPs at different pH (6.0-9.0) values are studied by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). Complexation of free Ag+ and Au3+ ions with the Lewis basic groups (carbonyls, carboxyls, and thiols) of FA and HA, followed by electron-transfer from redox-active moieties present in dissolved organic matter initiates the nucleation of the NPs. Alloy formation and interdiffusion of Au and Ag atoms are further facilitated by a galvanic replacement reaction between AuCl4- and Ag. Charge-transfer from Au to Ag stabilizes the formed bimetallic NPs. A more pronounced agglomeration of the Ag-Au NPs is observed when HA is used compared to FA as the reducing agent. The bimetallic NPs are stable for greater than four months, which suggests the possible persistence and dispersion of these materials in aquatic environments. The mechanistic ideas have broad generalizability to reductive mineralization processes mediated by dissolved organic matter.


Metal Nanoparticles , Silver , Alloys , Gold , Microscopy, Electron, Transmission
4.
ACS Omega ; 3(10): 14280-14293, 2018 Oct 31.
Article En | MEDLINE | ID: mdl-31458119

Fenestration elements that enable spectrally selective dynamic modulation of the near-infrared region of the electromagnetic spectrum are of great interest as a means of decreasing the energy consumption of buildings by adjusting solar heat gain in response to external temperature. The binary vanadium oxide VO2 exhibits a near-room-temperature insulator-metal electronic transition accompanied by a dramatic modulation of the near-infrared transmittance. The low-temperature insulating phase is infrared transparent but blocks infrared transmission upon metallization. There is considerable interest in harnessing the thermochromic modulation afforded by VO2 in nanocomposite thin films. However, to prepare a viable thermochromic film, the visible-light transmittance must be maintained as high as possible while maximizing thermochromic modulation in the near-infrared region of the electromagnetic spectrum, which necessitates the development of high-crystalline-quality VO2 nanocrystals of the optimal particle size embedded within the appropriate host matrix and refractive index matched to the host medium. Here, we demonstrate the preparation of acrylate-based nanocomposite thin films with varying sizes of embedded VO2 nanoparticles. The observed strong size dependence of visible-light transmittance and near-infrared modulation is explicable on the basis of optical simulations. In this article, we elucidate multiple scattering and absorption mechanisms, including Mie scattering, temperature-/phase-variant refractive-index mismatch between VO2 nanocrystals and the encapsulating matrix, and the appearance of a surface plasmon resonance using temperature-variant absorptance and diffuse transmittance spectroscopy measurements performed as a function of particle loading for the different sizes of VO2 nanocrystals. Nanocrystals with dimensions of 44 ± 30 nm show up to >32% near-infrared energy modulation across the near-infrared region of the electromagnetic spectrum while maintaining high visible-light transmission. The results presented here, providing mechanistic elucidation of the size dependence of the different scattering mechanisms, underscore the importance of nanocrystallite dimensions, refractive-index matching, and individualized dispersion of particles within the host matrix for the preparation of viable thermochromic thin films mitigating Mie scattering and differential refractive-index scattering.

5.
ACS Appl Mater Interfaces ; 9(44): 38887-38900, 2017 Nov 08.
Article En | MEDLINE | ID: mdl-29039916

Buildings consume an inordinate amount of energy, accounting for 30-40% of worldwide energy consumption. A major portion of solar radiation is transmitted directly to building interiors through windows, skylights, and glazed doors where the resulting solar heat gain necessitates increased use of air conditioning. Current technologies aimed at addressing this problem suffer from major drawbacks, including a reduction in the transmission of visible light, thereby resulting in increased use of artificial lighting. Since currently used coatings are temperature-invariant in terms of their solar heat gain modulation, they are unable to offset cold-weather heating costs that would otherwise have resulted from solar heat gain. There is considerable interest in the development of plastic fenestration elements that can dynamically modulate solar heat gain based on the external climate and are retrofittable onto existing structures. The metal-insulator transition of VO2 is accompanied by a pronounced modulation of near-infrared transmittance as a function of temperature and can potentially be harnessed for this purpose. Here, we demonstrate that a nanocomposite thin film embedded with well dispersed sub-100-nm diameter VO2 nanocrystals exhibits a combination of high visible light transmittance, effective near-infrared suppression, and onset of NIR modulation at wavelengths <800 nm. In our approach, hydrothermally grown VO2 nanocrystals with <100 nm diameters are dispersed within a methacrylic acid/ethyl acrylate copolymer after either (i) grafting of silanes to constitute an amorphous SiO2 shell or (ii) surface functionalization with perfluorinated silanes and the use of a perfluorooctanesulfonate surfactant. Homogeneous and high optical quality thin films are cast from aqueous dispersions of the pH-sensitive nanocomposites onto glass. An entirely aqueous-phase process for preparation of nanocrystals and their effective dispersion within polymeric nanocomposites allows for realization of scalable and viable plastic fenestration elements.

...