Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838135

RESUMEN

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Ratones Noqueados , Estrés Oxidativo , Degeneración Retiniana , Epitelio Pigmentado de la Retina , Animales , Humanos , Masculino , Ratones , Senescencia Celular , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología
2.
Curr Opin Pharmacol ; 76: 102463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788268

RESUMEN

Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the elderly. Although new therapies have recently emerged, there are currently no ways of preventing the development of the disease. Changes in intracellular recycling processes. Changes in intracellular recycling processes, called autophagy, lead to debris accumulation and cellular dysfunction in AMD models and AMD patients. Drugs that enhance autophagy hold promise as therapies for slowing AMD progression in preclinical models; however, more studies in humans are required. While a definitive cure for AMD will likely hinge on a personalized medicine approach, treatments that enhance autophagy hold promise for slowing vision loss.


Asunto(s)
Autofagia , Degeneración Macular , Humanos , Autofagia/efectos de los fármacos , Degeneración Macular/tratamiento farmacológico , Animales
3.
J Neuroinflammation ; 21(1): 64, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443987

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.


Asunto(s)
Inflamasomas , Degeneración Macular , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores Toll-Like , Inflamación
4.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808640

RESUMEN

Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.

5.
Neurobiol Aging ; 128: 1-16, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37130462

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss and dysfunction in the retinal pigment epithelium (RPE) with age is known to contribute to disease development. The aim of this study was to investigate how the C57BL/6J mouse RPE changes with age. RPE structure was found to change with age and eccentricity, with cell size increasing, nuclei lost, and tight junctions altered in the peripheral retina. Phagocytosis of photoreceptor outer segments (POS) by the RPE was investigated using gene expression analysis and histology. RNA-Seq transcriptomic gene profiling of the RPE showed a downregulation of genes involved in phagosome processing and histological analysis showed a decline in phagosome-lysosome association in the aged tissue. In addition, failures in the autophagy pathway that modulates intracellular waste degradation were observed in the aged RPE tissue. These findings highlight that RPE cell loss and slowing of POS processing contribute to RPE dysfunction with age and may predispose the aging eye to AMD development.


Asunto(s)
Fagocitosis , Epitelio Pigmentado de la Retina , Ratones , Animales , Ratones Endogámicos C57BL , Fagocitosis/genética , Fagosomas/metabolismo , Envejecimiento/genética
6.
Front Neuroanat ; 17: 997722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960036

RESUMEN

Introduction: A hallmark of photoreceptor degenerations is progressive, aberrant remodeling of the surviving retinal neurons and glia following photoreceptor loss. The exact relationship between neurons and glia remodeling in this late stage of retinal degeneration, however, is unclear. This study assessed this by examining Müller cell dysfunction via glutamine synthetase immunoreactivity and its spatial association with retinal neuron subpopulations through various cell markers. Methods: Aged Rd1 mice retinae (P150 - P536, n = minimum 5 per age) and control heterozygous rd1 mice retinae (P536, n = 5) were isolated, fixed and cryosectioned. Fluorescent immunolabeling of glutamine synthetase was performed and retinal areas quantified as having low glutamine synthetase immunoreactivity if proportion of labeled pixels in an area was less than two standard deviations of the mean of the total retina. Other Müller cell markers such as Sox9 and Glial fibrillary acidic protein along with neuronal cell markers Calbindin, Calretinin, recoverin, Protein kinase C-α, Glutamic acid decarboxylase 67, and Islet-1 were then quantified within areas of low and normal synthetase immunoreactivity. Results: Glutamine synthetase immunoreactivity was lost as a function of age in the rd1 mouse retina (P150 - P536). Immunoreactivity of other Müller cell markers, however, were unaffected suggesting Müller cells were still present in these low glutamine synthetase immunoreactive regions. Glutamine synthetase immunoreactivity loss affected specific neuronal populations: Type 2, Type 8 cone, and rod bipolar cells, as well as AII amacrine cells based on reduced recoverin, protein kinase Ca and parvalbumin immunoreactivity, respectively. The number of cell nuclei within regions of low glutamine synthetase immunoreactivity was also reduced suggesting possible neuronal loss rather than reduced cell marker immunoreactivity. Conclusion: These findings further support a strong interplay between glia-neuronal alterations in late-stage degeneration and highlight a need for future studies and consideration in intervention development.

7.
Clin Exp Ophthalmol ; 51(1): 81-91, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349522

RESUMEN

Diabetic retinopathy is the most feared complication for those with diabetes. Although visible vascular pathology traditionally defines the management of this condition, it is now recognised that a range of cellular changes occur in the retina from an early stage of diabetes. One of the most significant functional changes that occurs in those with diabetes is a loss of vasoregulation in response to changes in neural activity. There are several retinal cell types that are critical for mediating so-called neurovascular coupling, including Müller cells, microglia and pericytes. Although there is a great deal of evidence that suggests that Müller cells are integral to regulating the vasculature, they only modulate part of the vascular tree, highlighting the complexity of vasoregulation within the retina. Recent studies suggest that retinal immune cells, microglia, play an important role in mediating vasoconstriction. Importantly, retinal microglia contact both the vasculature and neural synapses and induce vasoconstriction in response to neurally expressed chemokines such as fractalkine. This microglial-dependent regulation occurs via the vasomediator angiotensinogen. Diabetes alters the way microglia regulate the retinal vasculature, by increasing angiotensinogen expression, causing capillary vasoconstriction and contributing to a loss of vascular reactivity to physiological signals. This article summarises recent studies showing changes in vascular regulation during diabetes, the potential mechanisms by which this occurs and the significance of these early changes to the progression of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Acoplamiento Neurovascular , Humanos , Angiotensinógeno/metabolismo , Retina/patología , Vasos Retinianos/patología , Microglía/metabolismo , Microglía/patología
8.
Front Neurosci ; 16: 1009599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408381

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.

9.
Autophagy ; 18(10): 2368-2384, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35196199

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of vision loss with recent evidence indicating an important role for macroautophagy/autophagy in disease progression. In this study we investigate the efficacy of targeting autophagy for slowing dysfunction in a mouse model with features of early AMD. Mice lacking APOE (apolipoprotein E; B6.129P2-Apoetm1UncJ/Arc) and C57BL/6 J- (wild-type, WT) mice were treated with metformin or trehalose in the drinking water from 5 months of age and the ocular phenotype investigated at 13 months. Control mice received normal drinking water. APOE-control mice had reduced retinal function and thickening of Bruch's membrane consistent with an early AMD phenotype. Immunohistochemical labeling showed reductions in MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 beta) and LAMP1 (lysosomal-associated membrane protein 1) labeling in the photoreceptors and retinal pigment epithelium (RPE). This correlated with increased LC3-II:LC3-I ratio and alterations in protein expression in multiple autophagy pathways measured by reverse phase protein array, suggesting autophagy was slowed. Treatment of APOE-mice with metformin or trehalose ameliorated the loss of retinal function and reduced Bruch's membrane thickening, enhancing LC3 and LAMP1 labeling in the ocular tissues and restoring LC3-II:LC3-I ratio to WT levels. Protein analysis indicated that both treatments boost ATM-AMPK driven autophagy. Additionally, trehalose increased p-MAPK14/p38 to enhance autophagy. Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5' adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4'-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type.


Asunto(s)
Agua Potable , Degeneración Macular , Metformina , Proteína Quinasa 14 Activada por Mitógenos , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato , Animales , Apolipoproteínas E/genética , Autofagia/genética , Agua Potable/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína Sequestosoma-1/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo , Trehalosa , Proteína p53 Supresora de Tumor/genética
10.
Sci Rep ; 12(1): 859, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039609

RESUMEN

Neovascular AMD (nAMD) leads to vision loss and is a leading cause of visual impairment in the industrialised world. Current treatments that target blood vessel growth have not been able to treat subretinal fibrosis and nAMD patients continue to lose vision. The molecular mechanisms involved in the development of fibrotic lesions in nAMD are not well understood. The aim of this study was to further understand subretinal fibrosis in the laser photocoagulation model of choroidal neovascularization (CNV) by studying the whole transcriptome of the RPE/choroid following CNV and the application of an anti-fibrotic following CNV. Seven days after laser induced CNV, RPE and choroid tissue was separated and underwent RNAseq. Differential expression analysis and pathway analysis revealed an over representation of immune signalling and fibrotic associated pathways in CNV compared to control RPE/choroid tissue. Comparisons between the mouse CNV model to human CNV revealed an overlap in upregulated expression for immune genes (Ccl2, Ccl8 and Cxcl9) and extracellular matrix remodeling genes (Comp, Lrcc15, Fndc1 and Thbs2). Comparisons between the CNV model and other fibrosis models showed an overlap of over 60% of genes upregulated in either lung or kidney mouse models of fibrosis. Treatment of CNV using a novel cinnamoyl anthranilate anti-fibrotic (OCX063) in the laser induced CNV model was selected as this class of drugs have previously been shown to target fibrosis. CNV lesion leakage and fibrosis was found to be reduced using OCX063 and gene expression of genes within the TGF-beta signalling pathway. Our findings show the presence of fibrosis gene expression pathways present in the laser induced CNV mouse model and that anti-fibrotic treatments offer the potential to reduce subretinal fibrosis in AMD.


Asunto(s)
Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Neovascularización Coroidal/genética , Neovascularización Coroidal/patología , Perfilación de la Expresión Génica , Inmunidad/genética , Transcriptoma/genética , Animales , Proteína de la Matriz Oligomérica del Cartílago , Quimiocina CCL2 , Quimiocina CCL8 , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/inmunología , Modelos Animales de Enfermedad , Fibrosis/genética , Expresión Génica , Ratones Endogámicos C57BL , Retina/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Trends Genet ; 38(4): 312-316, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35093239

RESUMEN

Reticular pseudodrusen (RPD) are subretinal deposits that, when observed with age-related macular degeneration (AMD), form a distinct phenotype, often associated with late-stage disease. To date, RPD genetic risk associations overlap six well-established AMD-risk regions. Determining RPD-specific underlying genetic causes by using adequate imaging methods should improve our understanding of the pathophysiology of RPD.


Asunto(s)
Degeneración Macular , Drusas Retinianas , Humanos , Degeneración Macular/complicaciones , Degeneración Macular/genética , Drusas Retinianas/complicaciones , Drusas Retinianas/genética , Factores de Riesgo
12.
Prog Retin Eye Res ; 88: 101017, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34752916

RESUMEN

Reticular pseudodrusen (RPD), or subretinal drusenoid deposits (SDD), refer to distinct lesions that occur in the subretinal space. Over the past three decades, their presence in association with age-related macular degeneration (AMD) has become increasingly recognized, especially as RPD have become more easily distinguished with newer clinical imaging modalities. There is also an increasing appreciation that RPD appear to be a critical AMD phenotype, where understanding their pathogenesis will provide further insights into the processes driving vision loss in AMD. However, key barriers to understanding the current evidence related to the independent impact of RPD include the heterogeneity in defining their presence, and failure to account for the confounding impact of the concurrent presence and severity of AMD pathology. This review thus critically discusses the current evidence on the prevalence and clinical significance of RPD and proposes a clinical imaging definition of RPD that will help move the field forward in gathering further key knowledge about this critical phenotype. It also proposes a putative mechanism for RPD formation and how they may drive progression to vision loss in AMD, through examining current evidence and presenting novel findings from preclinical and clinical studies.


Asunto(s)
Degeneración Macular , Drusas Retinianas , Angiografía con Fluoresceína/métodos , Humanos , Degeneración Macular/epidemiología , Fenotipo , Retina/patología , Drusas Retinianas/genética , Factores de Riesgo , Tomografía de Coherencia Óptica/métodos
13.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903661

RESUMEN

Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes. Structurally, microglia were found to contact retinal capillaries and neuronal synapses. In the brain and retinal explants, the addition of fractalkine, the sole ligand for monocyte receptor Cx3cr1, resulted in capillary constriction at regions of microglial contact. This vascular regulation was dependent on microglial Cx3cr1 involvement, since genetic and pharmacological inhibition of Cx3cr1 abolished fractalkine-induced constriction. Analysis of the microglial transcriptome identified several vasoactive genes, including angiotensinogen, a constituent of the renin-angiotensin system (RAS). Subsequent functional analysis showed that RAS blockade via candesartan abolished microglial-induced capillary constriction. Microglial regulation was explored in a rat streptozotocin (STZ) model of diabetic retinopathy. Retinal blood flow was reduced after 4 wk due to reduced capillary diameter and this was coincident with increased microglial association. Functional assessment showed loss of microglial-capillary response in STZ-treated animals and transcriptome analysis showed evidence of RAS pathway dysregulation in microglia. While candesartan treatment reversed capillary constriction in STZ-treated animals, blood flow remained decreased likely due to dilation of larger vessels. This work shows microglia actively participate in the neurovascular unit, with aberrant microglial-vascular function possibly contributing to the early vascular compromise during diabetic retinopathy.


Asunto(s)
Quimiocina CX3CL1/metabolismo , Retinopatía Diabética/patología , Microglía/fisiología , Retina/patología , Animales , Bencimidazoles/farmacología , Compuestos de Bifenilo/farmacología , Quimiocina CX3CL1/farmacología , Retinopatía Diabética/inducido químicamente , Retinopatía Diabética/metabolismo , Perfilación de la Expresión Génica , Ratones , Microglía/metabolismo , Neuronas/fisiología , Pericitos/patología , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Retina/metabolismo , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/patología , Transducción de Señal/efectos de los fármacos , Estreptozocina/farmacología , Tetrazoles/farmacología , Vasoconstricción/efectos de los fármacos
14.
Front Cell Neurosci ; 15: 659843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967697

RESUMEN

Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.

15.
Front Med (Lausanne) ; 8: 634177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816525

RESUMEN

Age-related macular degeneration (AMD) is characterized by the accumulation of debris in the posterior eye. In this study we evaluated peripheral blood monocyte phagocytic function at various stages of AMD and in aged matched control participants. Real-time tri-color flow cytometry was used to quantify phagocytic function of peripheral blood monocyte subsets (non-classic, intermediate and classic) isolated from subjects with intermediate or late AMD and compared with age matched healthy controls. Assessment of phagocytic function of monocytes isolated from those with and without reticular pseudodrusen was also made, and the effect of glatiramer acetate on phagocytic function assessed. Phagocytic function was reduced in all subjects with AMD, irrespective of stage of disease. However, there was no correlation between phagocytic function and drusen load, nor any difference between the level of phagocytosis in those with or without reticular pseudodrusen. Treatment with glatiramer acetate increased phagocytosis of classical and non-classical monocytes, normalizing the reduction in phagocytosis observed in those with AMD. These findings suggest that defective systemic phagocytosis is associated with both intermediate and late stages of AMD, highlighting a potential role in the accumulation of debris that occurs early in the disease process. Assessing peripheral monocyte phagocytic function provides further insights into the etiology of this disease and offer a novel therapeutic target.

16.
J Clin Med ; 10(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525639

RESUMEN

The presence of drusen is an important hallmark of age-related macular degeneration (AMD). Laser-induced regression of drusen, first observed over four decades ago, has led to much interest in the potential role of lasers in slowing the progression of the disease. In this article, we summarise the key insights from pre-clinical studies into the possible mechanisms of action of various laser interventions that result in beneficial changes in the retinal pigment epithelium/Bruch's membrane/choriocapillaris interface. Key learnings from clinical trials of laser treatment in AMD are also summarised, concentrating on the evolution of laser technology towards short pulse, non-thermal delivery such as the nanosecond laser. The evolution in our understanding of AMD, through advances in multimodal imaging and functional testing, as well as ongoing investigation of key pathological mechanisms, have all helped to set the scene for further well-conducted randomised trials to further explore potential utility of the nanosecond and other subthreshold short pulse lasers in AMD.

17.
Sci Rep ; 11(1): 4184, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603067

RESUMEN

There is increasing evidence for the vulnerability of specific retinal ganglion cell (RGC) types in those with glaucoma and in animal models. In addition, the P2X7-receptor (P2X7-R) has been suggested to contribute to RGC death following stimulation and elevated IOP, though its role in RGC dysfunction prior to death has not been examined. Therefore, we examined the effect of an acute, non-ischemic intraocular pressure (IOP) insult (50 mmHg for 30 min) on RGC function in wildtype mice and P2X7-R knockout (P2X7-KO) mice. We examined retinal function using electroretinogram recordings and individual RGC responses using multielectrode arrays, 3 days following acute IOP elevation. Immunohistochemistry was used to examine RGC cell death and P2X7-R expression in several RGC types. Acute intraocular pressure elevation produced pronounced dysfunction in RGCs; whilst other retinal neuronal responses showed lesser changes. Dysfunction at 3 days post-injury was not associated with RGC loss or changes in receptive field size. However, in wildtype animals, OFF-RGCs showed reduced spontaneous and light-elicited activity. In the P2X7-KO, both ON- and OFF-RGC light-elicited responses were reduced. Expression of P2X7-R in wildtype ON-RGC dendrites was higher than in other RGC types. In conclusion, OFF-RGCs were vulnerable to acute IOP elevation and their dysfunction was not rescued by genetic ablation of P2X7-R. Indeed, knockout of P2X7-R also caused ON-RGC dysfunction. These findings aid our understanding of how pressure affects RGC function and suggest treatments targeting the P2X7-R need to be carefully considered.


Asunto(s)
Presión Intraocular/fisiología , Receptores Purinérgicos P2X7/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Glaucoma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tonometría Ocular/métodos
18.
Genomics Proteomics Bioinformatics ; 19(2): 223-242, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33307245

RESUMEN

Human pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of diseases associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate time points of retinal pigment epithelium (RPE) cultures that reflect native counterparts, we characterised the transcriptomic profiles of the hPSC-derived RPE cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single-cell RNA-sequencing of a total of 16,576 cells to assess the molecular changes of the RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial-mesenchymal transition, and with the maturing populations of the RPE observed with time in culture. Assessment of Gene Ontology pathways revealed that as the cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirms a maturing transcriptional profile of RPE cells in culture. These results suggest that long-term in vitro culture of RPE cells allows the modelling of specific phenotypes observed in native mature tissues. Our work highlights the transcriptional landscape of hPSC-derived RPE cells as they age in culture, which provides a reference for native and patient samples to be benchmarked against.


Asunto(s)
Células Madre Pluripotentes , Epitelio Pigmentado de la Retina , Diferenciación Celular/genética , Línea Celular , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transcriptoma
19.
Front Neurosci ; 14: 581579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224023

RESUMEN

Photoreceptor death contributes to 50% of irreversible vision loss in the western world. Pro23His (P23H) transgenic albino rat strains are widely used models for the most common rhodopsin gene mutation associated with the autosomal dominant form of retinitis pigmentosa. However, the mechanism(s) by which photoreceptor death occurs are not well understood and were the principal aim of this study. We first used electroretinogram recording and optical coherence tomography to confirm the time course of functional and structural loss. Electroretinogram analyses revealed significantly decreased rod photoreceptor (a-wave), bipolar cell (b-wave) and amacrine cell responses (oscillatory potentials) from P30 onward. The cone-mediated b-wave was also decreased from P30. TUNEL analysis showed extensive cell death at P18, with continued labeling detected until P30. Focused gene expression arrays indicated activation of, apoptosis, autophagy and necroptosis in whole retina from P14-18. However, analysis of mitochondrial permeability changes (ΔΨm) using JC-1 dye, combined with immunofluorescence markers for caspase-dependent (cleaved caspase-3) and caspase-independent (AIF) cell death pathways, indicated mitochondrial-mediated cell death was not a major contributor to photoreceptor death. By contrast, reverse-phase protein array data combined with RIPK3 and phospho-MLKL immunofluorescence indicated widespread necroptosis as the predominant mechanism of photoreceptor death. These findings highlight the complexity of mechanisms involved in photoreceptor death in the Pro23His rat model of degeneration and suggest therapies that target necroptosis should be considered for their potential to reduce photoreceptor death.

20.
Clin Exp Optom ; 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33090561

RESUMEN

Photoreceptor death is an important contributor to irreversible vision loss worldwide. In this review, I outline our work examining the role that purines, such as adenosine triphosphate (ATP), have in normal retinal function and in retinal disease. Our work shows that the actions of ATP, mediated by P2X receptors, are expressed in various retinal layers including photoreceptor terminals, and when stimulated by excessive levels of ATP is associated with rapid death of neurons. Treatment with a compound that blocks the action of P2X and some P2Y receptors reduces photoreceptor death in a mouse model of retinal degeneration. Our observations not only provide a means for developing a potential treatment for reducing photoreceptor death, but also provides a novel way of studying the neural plasticity effects that develop in the inner retina following photoreceptor death. There are a range of inner retinal changes that could influence the effectiveness of retinal prostheses. Indeed, using an ATP-induced degeneration model, we established that the amount of electrical stimulation required to elicit a response in the visual cortex was affected by the level of glial scarring. However, changes in P2X7 receptor expression by OFF ganglion cells during retinal degeneration can also be exploited by photoswitches to restore light sensitivity to degenerated retinae. Finally, our work has also considered how P2X7 expression by innate immune cells, and its role as a scavenger receptor, contributes to age-related macular degeneration (AMD). Our results show that loss of P2X7 function is associated with thickening of Bruch's membrane as well as increased risk of advanced disease in people with AMD. Overall, our work over the last 20 years highlights the importance of purinergic signalling in normal retinal function and retinal disease and suggest that developing therapies that target P2X7 function could be of benefit for these diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...