Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Antibiotics (Basel) ; 13(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38247606

RESUMEN

With the increase in carbapenem-resistant A. baumannii (CRAB) infections, there has been a resurgence in the use of polymyxins, specifically colistin (COL). Since the reintroduction of COL-based regimens in treating CRAB infections, several COL-resistant A. baumannii isolates have been identified, with the mechanism of resistance heavily linked with the loss of the lipopolysaccharide (LPS) layer of the bacterial outer membrane through mutations in lpxACD genes or the pmrCAB operon. SPR206, a novel polymyxin derivative, has exhibited robust activity against multidrug-resistant (MDR) A. baumannii. However, there is a dearth of knowledge regarding its efficacy in comparison with other A. baumannii-active therapeutics and whether traditional polymyxin (COL) mediators of A. baumannii resistance also translate to reduced SPR206 activity. Here, we conducted susceptibility testing using broth microdilution on 30 A. baumannii isolates (17 COL-resistant and 27 CRAB), selected 14 COL-resistant isolates for genomic sequencing analysis, and performed time-kill analyses on four COL-resistant isolates. In susceptibility testing, SPR206 demonstrated a lower range of minimum inhibitory concentrations (MICs) compared with COL, with a four-fold difference observed in MIC50 values. Mutations in lpxACD and/or pmrA and pmrB genes were detected in each of the 14 COL-resistant isolates; however, SPR206 maintained MICs ≤ 2 mg/L for 9/14 (64%) of the isolates. Finally, SPR206-based combination regimens exhibited increased synergistic and bactericidal activity compared with COL-based combination regimens irrespective of the multiple resistance genes detected. The results of this study highlight the potential utility of SPR206 in the treatment of COL-resistant A. baumannii infections.

2.
Mol Oral Microbiol ; 39(1): 12-26, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041478

RESUMEN

A dysbiotic microbial community whose members have specific/synergistic functions that are modulated by environmental conditions, can disturb homeostasis in the subgingival space leading to destructive inflammation, plays a role in the progression of periodontitis. Filifactor alocis, a gram-positive, anaerobic bacterium, is a newly recognized microbe that shows a strong correlation with periodontal disease. Our previous observations suggested F. alocis to be more resistant to oxidative stress compared to Porphyromonas gingivalis. The objective of this study is to further determine if F. alocis, because of its increased resistance to oxidative stress, can affect the survival of other 'established' periodontal pathogens under environmental stress conditions typical of the periodontal pocket. Here, we have shown that via their interaction, F. alocis protects P. gingivalis W83 under H2 O2 -induced oxidative stress conditions. Transcriptional profiling of the interaction of F. alocis and P. gingivalis in the presence of H2 O2 -induced stress revealed the modulation of several genes, including those with ABC transporter and other cellular functions. The ABC transporter operon (PG0682-PG0685) of P. gingivalis was not significant to its enhanced survival when cocultured with F. alocis under H2 O2 -induced oxidative stress. In F. alocis, one of the most highly up-regulated operons (FA0894-FA0897) is predicted to encode a putative manganese ABC transporter, which in other bacteria can play an essential role in oxidative stress protection. Collectively, the results may indicate that F. alocis could likely stabilize the microbial community in the inflammatory microenvironment of the periodontal pocket by reducing the oxidative environment. This strategy could be vital to the survival of other pathogens, such as P. gingivalis, and its ability to adapt and persist in the periodontal pocket.


Asunto(s)
Bacterias Grampositivas , Porphyromonas gingivalis , Humanos , Porphyromonas gingivalis/genética , Bolsa Periodontal , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Transportadoras de Casetes de Unión a ATP
3.
PLoS One ; 18(9): e0290845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682912

RESUMEN

Antimicrobial resistance is a great public health concern that is now described as a "silent pandemic". The global burden of antimicrobial resistance requires new antibacterial treatments, especially for the most challenging multidrug-resistant bacteria. There are various mechanisms by which bacteria develop antimicrobial resistance including expression of ß-lactamase enzymes, overexpression of efflux pumps, reduced cell permeability through downregulation of porins required for ß-lactam entry, or modifications in penicillin-binding proteins. Inactivation of the ß-lactam antibiotics by ß-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Although several effective small-molecule inhibitors of ß-lactamases such as clavulanic acid and avibactam are clinically available, they act only on selected class A, C, and some class D enzymes. Currently, none of the clinically approved inhibitors can effectively inhibit Class B metallo-ß-lactamases. Additionally, there is increased resistance to these inhibitors reported in several bacteria. The objective of this study is to use the Resonant Recognition Model (RRM), as a novel strategy to inhibit/modulate specific antimicrobial resistance targets. The RRM is a bio-physical approach that analyzes the distribution of energies of free electrons and posits that there is a significant correlation between the spectra of this energy distribution and related protein biological activity. In this study, we have used the RRM concept to evaluate the structure-function properties of a group of 22 ß-lactamase proteins and designed 30-mer peptides with the desired RRM spectral periodicities (frequencies) to function as ß-lactamase inhibitors. In contrast to the controls, our results indicate 100% inhibition of the class A ß-lactamases from Escherichia coli and Enterobacter cloacae. Taken together, the RRM model can likely be utilized as a promising approach to design ß-lactamase inhibitors for any specific class. This may open a new direction to combat antimicrobial resistance.


Asunto(s)
Inhibidores de beta-Lactamasas , beta-Lactamasas , Inhibidores de beta-Lactamasas/farmacología , Péptidos , Regulación hacia Abajo , Ácido Clavulánico , Escherichia coli
4.
Mol Oral Microbiol ; 38(4): 289-308, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37134265

RESUMEN

Porphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.9-fold. Isogenic mutants P. gingivalis FLL457 (ΔCdhR::ermF), FLL458 (ΔPG1236::ermF), and FLL459 (ΔPG1236-CdhR::ermF) were made by allelic exchange mutagenesis to determine the involvement of these genes in P. gingivalis W83 NO stress resistance. The mutants were black pigmented and ß hemolytic and their gingipain activities varied with strains. FLL457 and FLL459 mutants were more sensitive to NO compared to the wild type, and complementation restored NO sensitivity to that of the wild type. DNA microarray analysis of FLL457 showed that approximately 2% of the genes were upregulated and over 1% of the genes downregulated under NO stress conditions compared to the wild type. Transcriptome analysis of FLL458 and FLL459 under NO stress showed differences in their modulation patterns. Some similarities were also noticed between all mutants. The PG1236-CdhR gene cluster revealed increased expression under NO stress and may be part of the same transcriptional unit. Recombinant CdhR showed binding activity to the predicted promoter regions of PG1459 and PG0495. Taken together, the data indicate that CdhR may play a role in NO stress resistance and be involved in a regulatory network in P. gingivalis.


Asunto(s)
Óxido Nítrico , Porphyromonas gingivalis , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Óxido Nítrico/metabolismo , Hemina/metabolismo , Cisteína-Endopeptidasas Gingipaínas/metabolismo , Perfilación de la Expresión Génica
5.
Microorganisms ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838435

RESUMEN

Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.

6.
Microbiol Spectr ; : e0441122, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719196

RESUMEN

The survival/adaptation of Porphyromonas gingivalis to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Several functional classes of genes, depending on the severity and duration of the exposure, were induced in P. gingivalis under H2O2-induced oxidative stress. The PG_0686 gene was highly upregulated under prolonged oxidative stress. PG_0686, annotated as a hypothetical protein of unknown function, is a 60 kDa protein that carries several domains including hemerythrin, PAS10, and domain of unknown function (DUF)-1858. Although PG_0686 showed some relatedness to several diguanylate cyclases (DGCs), it is missing the classical conserved, active site sequence motif (GGD[/E]EF), commonly observed in other bacteria. PG_0686-related proteins are observed in other anaerobic bacterial species. The isogenic mutant P. gingivalis FLL361 (ΔPG_0686::ermF) showed increased sensitivity to H2O2, and decreased gingipain activity compared to the parental strain. Transcriptome analysis of P. gingivalis FLL361 showed the dysregulation of several gene clusters/operons, known oxidative stress resistance genes, and transcriptional regulators, including PG_2212, CdhR and PG_1181 that were upregulated under normal anaerobic conditions. The intracellular level of c-di-GMP in P. gingivalis FLL361 was significantly decreased compared to the parental strain. The purified recombinant PG_0686 (rPG_0686) protein catalyzed the formation of c-di-GMP from GTP. Collectively, our data suggest a global regulatory property for PG_0686 that may be part of an unconventional second messenger signaling system in P. gingivalis. Moreover, it may coordinately regulate a pathway(s) vital for protection against environmental stress, and is significant in the pathogenicity of P. gingivalis and other anaerobes. IMPORTANCE Porphyromonas gingivalis is an important etiological agent in periodontitis and other systemic diseases. There is still a gap in our understanding of the mechanisms that P. gingivalis uses to survive the inflammatory microenvironment of the periodontal pocket. The hypothetical PG_0686 gene was highly upregulated under prolonged oxidative stress. Although the tertiary structure of PG_0686 showed little relatedness to previously characterized diguanylate cyclases (DGCs), and does not contain the conserved GGD(/E)EF catalytic domain motif sequence, an ability to catalyze the formation of c-di-GMP from GTP is demonstrated. The second messenger pathway for c-di-GMP was previously predicted to be absent in P. gingivalis. PG_0686 paralogs are identified in other anaerobic bacteria. Thus, PG_0686 may represent a novel class of DGCs, which is yet to be characterized. In conclusion, we have shown, for the first time, evidence for the presence of c-di-GMP signaling with environmental stress protective function in P. gingivalis.

7.
Mol Oral Microbiol ; 38(1): 23-33, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36412172

RESUMEN

The survival/adaptation of Filifactor alocis, a fastidious Gram-positive asaccharolytic anaerobe, to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Moreover, its pathogenic characteristics are highlighted by its capacity to survive in the oxidative-stress microenvironment of the periodontal pocket and a likely ability to modulate the microbial community dynamics. There is still a significant gap in our understanding of its mechanism of oxidative stress resistance and its impact on the virulence and pathogenicity of the microbial biofilm. Coinfection of epithelial cells with F. alocis and Porphyromonas gingivalis resulted in the upregulation of several genes, including HMPREF0389_01654 (FA1654). Bioinformatics analysis indicates that FA1654 has a "di-iron binding domain" and could function as a DNA starvation and stationary phase protection (DPS) protein. We have further characterized the FA1654 protein to determine its role in oxidative stress resistance in F. alocis. In the presence of hydrogen peroxide-induced oxidative stress, there was an ∼1.3 fold upregulation of the FA1654 gene in F. alocis. Incubation of the purified FA1654 protein with DNA in the presence of hydrogen peroxide and iron resulted in the protection of the DNA from Fenton-mediated degradation. Circular dichroism and differential scanning fluorimetry studies have documented the intrinsic ability of rFA1654 protein to bind iron; however, the rFA1654 protein is missing the intrinsic ability to reduce hydrogen peroxide. Collectively, the data may suggest that FA1654 in F. alocis is involved in oxidative stress resistance via an ability to protect against Fenton-mediated oxidative stress-induced damage.


Asunto(s)
Clostridiales , Peróxido de Hidrógeno , Humanos , Bolsa Periodontal , Células Epiteliales
8.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740540

RESUMEN

Currently, most neuroblastoma patients are treated according to the Children's Oncology Group (COG) risk group assignment; however, neuroblastoma's heterogeneity renders only a few predictors for treatment response, resulting in excessive treatment. Here, we sought to couple COG risk classification with tumor intracellular microbiome, which is part of the molecular signature of a tumor. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional high-risk therapies. Mechanistically, the classification power of M-scores implies the effect of CREB over-activation, which may influence the critical genes involved in cellular proliferation, anti-apoptosis, and angiogenesis, affecting tumor cell proliferation survival and metastasis. Thus, intracellular microbiota abundance in neuroblastoma regulates intracellular signals to affect patients' survival.

9.
Mol Oral Microbiol ; 37(2): 77-80, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35060684

RESUMEN

The periodontal pocket and likely caries lesions may act as a reservoir and source of dissemination and development of systemic infections. While periodontal pockets have been found to harbor several viral species, there is no information on its ability to serve as a reservoir for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have used a real-time polymerase chain reaction (RT-PCR) approach to evaluate SARS-CoV-2 in periodontal pockets and cavitated caries lesions in a cross-sectional study of 72 participants who were divided into six groups: symptomatic positive COVID-19 cases with periodontal pockets, symptomatic positive with cavitated caries lesions, asymptomatic positive with periodontal pockets, asymptomatic positive with cavitated caries lesions, positive control, and negative control. A total of 180 samples were interrogated by RT-PCR to amplify the SARS-CoV-2 E and S genes. SARS-CoV-2 was present in 41.7% of symptomatic positive COVID-19 cases with periodontal pockets and 16.7% of symptomatic positive with cavitated caries lesions. The mean Ct value of E and S genes in periodontal pockets patients were 36.06±0.46 and 30.06±6.73, respectively, and the mean Ct value for both genes in caries lesions patients were 35.73±4.14, and 34.78±1.93, respectively. The sensitivity, specificity, and accuracy to detect SARS-CoV-2 among periodontal pockets were 20.8% (95% CI 7.13-42.15), 100% (95% CI 73.54-100.0), and 47.2% (95% CI 30.22-64.51), respectively. Among cavitated caries lesions patients, they were 8.3% (95% CI 1.03-27.0), 100% (95% CI 73.54-100.0), and 38.9% (95% CI 23.14-56.54), respectively. SARS-CoV-2 can be detected in periodontal pockets and caries lesions, and these sites may act as reservoirs for the virus. However, the sensitivity of SARS-CoV-2 detection is low compared with other methods. To our knowledge, this report is the first to investigate the relationship between SARS-CoV-2 and periodontal pockets and caries.


Asunto(s)
COVID-19 , Susceptibilidad a Caries Dentarias , COVID-19/diagnóstico , Estudios Transversales , Humanos , Bolsa Periodontal , SARS-CoV-2
10.
Microbiol Spectr ; 9(3): e0121221, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756068

RESUMEN

In the periodontal pocket, there is a direct correlation between environmental conditions, the dynamic oral microbial flora, and disease. The relative abundance of several newly recognized microbial species in the oral microenvironment has raised questions on their impact on disease development. One such organism, Filifactor alocis, is significant to the pathogenic biofilm structure. Moreover, its pathogenic characteristics are highlighted by its ability to survive in the oxidative-stress microenvironment of the periodontal pocket and alter the microbial community dynamics. There is a gap in our understanding of its mechanism(s) of oxidative stress resistance and impact on pathogenicity. Several proteins, including HMPRFF0389-00519 (FA519), were observed in high abundance in F. alocis during coinfection of epithelial cells with Porphyromonas gingivalis W83. Bioinformatics analysis shows that FA519 contains a "Cys-X-X-Cys zinc ribbon domain" which could be involved in DNA binding and oxidative stress resistance. We have characterized FA519 to elucidate its roles in the oxidative stress resistance and virulence of F. alocis. Compared to the wild-type strain, the F. alocis isogenic gene deletion mutant, FLL1013 (ΔFA519::ermF), showed significantly reduced sensitivity to hydrogen peroxide and nitric oxide-induced stress. The ability to form biofilm and adhere to and invade gingival epithelial cells was also reduced in the isogenic mutant. The recombinant FA519 protein was shown to protect DNA from Fenton-mediated damage with an intrinsic ability to reduce hydrogen peroxide and disulfide bonds. Collectively, these results suggest that FA519 is involved in oxidative stress resistance and can modulate important virulence attributes in F. alocis. IMPORTANCE Filifactor alocis is an emerging member of the periodontal community and is now proposed to be a diagnostic indicator of periodontal disease. However, due to the lack of genetic tools available to study this organism, not much is known about its virulence attributes. The mechanism(s) of oxidative stress resistance in F. alocis is unknown. Therefore, identifying the adaptive mechanisms utilized by F. alocis to survive in the oxidative stress environment of the periodontal pocket would lead to understanding its virulence regulation, which could help develop novel therapeutic treatments to combat the effects of periodontal disease. This study is focused on the characterization of FA519, a hypothetical protein in F. alocis, as a multifunctional protein that plays an important role in the reactive oxygen species-detoxification pathway. Collectively, our results suggest that FA519 is involved in oxidative stress resistance and can modulate important virulence attributes in F. alocis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridiales/metabolismo , Inactivación Metabólica/fisiología , Estrés Oxidativo/fisiología , Bolsa Periodontal/microbiología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Clostridiales/genética , Clostridiales/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Humanos , Inactivación Metabólica/genética , Microbiota/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enfermedades Periodontales/microbiología , Enfermedades Periodontales/patología , Peroxidasa/metabolismo , Porphyromonas gingivalis/crecimiento & desarrollo , Porphyromonas gingivalis/metabolismo , Tiorredoxinas/metabolismo , Factores de Virulencia/genética
11.
Mol Oral Microbiol ; 36(3): 202-213, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811483

RESUMEN

Porphyromonas gingivalis is a causative agent for periodontal disease. Binding of platelets to this gram-negative anaerobe can regulate host hemostatic (thrombus forming) and immune (neutrophil interacting) responses during bacterial infection. Additionally, in response to bacterial pathogens neutrophils can release their DNA, forming highly prothrombotic neutrophil extracellular traps (NETs), which then further enhance platelet responses. This study evaluates the role of P. gingivalis on platelet expression of CD62P, platelet-neutrophil interactions, and labeled neutrophil-associated DNA. Human whole blood was preincubated with varying P. gingivalis concentrations, with or without subsequent addition of adenosine diphosphate (ADP). Flow cytometry was employed to measure platelet expression of CD62P using PerCP-anti-CD61 and PE-anti-CD62P, platelet-neutrophil interactions using PerCP-anti-CD61 and FITC-anti-CD16, and the release of neutrophil DNA using FITC-anti-CD16 and Sytox Blue labeling. Preincubation with a high (6.25 × 106  CFU/mL) level of P. gingivalis significantly increased platelet expression of CD62P in ADP treated and untreated whole blood. In addition, platelet-neutrophil interactions were significantly increased after ADP stimulation, following 5-22 min preincubation of blood with high P. gingivalis CFU. However, in the absence of added ADP, platelet-neutrophil interactions increased in a manner dependent on the preincubation time with P. gingivalis. Moreover, after ADP addition, 16 min preincubation of whole blood with P. gingivalis led to increased labeling of neutrophil-associated DNA. Taken together, the results suggest that the presence of P. gingivalis alters platelet and neutrophil responses to increase platelet activation, platelet interactions with neutrophils, and the level of neutrophil antimicrobial NETs.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Plaquetas , Humanos , Activación Plaquetaria , Porphyromonas gingivalis
12.
Mol Oral Microbiol ; 36(1): 80-91, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33377315

RESUMEN

Anti-sigma factors play a critical role in regulating the expression of sigma factors in response to environmental stress signals. PG1659 is cotranscribed with an upstream gene PG1660 (rpoE), which encodes for a sigma factor that plays an important role in oxidative stress resistance and the virulence regulatory network of P. gingivalis. PG1659, which is annotated as a hypothetical gene, is evaluated in this study. PG1659, composed of 130 amino acids, is predicted to be transmembrane protein with a single calcium (Ca2+ ) binding site. In P. gingivalis FLL358 (ΔPG1659::ermF), the rpoE gene was highly upregulated compared to the wild-type W83 strain. RpoE-induced genes were also upregulated in the PG1659-defective isogenic mutant. Both protein-protein pull-down and bacterial two-hybrid assays revealed that the PG1659 protein could interact with/bind RpoE. The N-terminal domain of PG1659, representing the cytoplasmic fragment of the protein, is critical for interaction with RpoE. In the presence of PG1659, the initiation of transcription by the RpoE sigma factor was inhibited. Taken together, our data suggest that PG1659 is an anti-sigma factor which plays an important regulatory role in the modulation of the sigma factor RpoE in P. gingivalis.


Asunto(s)
Porphyromonas gingivalis , Factor sigma , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Estrés Fisiológico , Virulencia
13.
Mol Oral Microbiol ; 35(6): 251-259, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949112

RESUMEN

Porphyromonas gingivalis is a gram-negative anaerobic bacterium and an etiologic agent of adult periodontitis. By inducing a dysbiotic state within the host microbiota it contributes to a chronic inflammatory environment in the oral cavity. Under some circumstances, the oral bacteria may gain access to systemic circulation. While the most widely recognized function of platelets is to reduce hemorrhage in case of vascular damage, it is known that platelets are also involved in the hematologic responses to bacterial infections. Some pathogenic bacteria can interact with platelets, triggering their activation and aggregation. The aim of this study was to assess platelet responses to the presence of P. gingivalis in whole blood. Human whole blood was pretreated with P. gingivalis and then platelet plug formation was measured under high shear conditions using the PFA-100. In the presence of P. gingivalis, time for a platelet plug to occlude the aperture in the collagen/ADP cartridge was shortened in a manner dependent on bacterial concentration and the duration of bacterial preincubation of blood. P. gingivalis enhances thrombus forming potential of platelets in whole blood.


Asunto(s)
Coagulación Sanguínea , Plaquetas/microbiología , Porphyromonas gingivalis , Humanos
14.
Sci Rep ; 10(1): 9178, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513978

RESUMEN

Filifactor alocis, a Gram-positive anaerobic bacterium, is now a proposed diagnostic indicator of periodontal disease. Because the stress response of this bacterium to the oxidative environment of the periodontal pocket may impact its pathogenicity, an understanding of its oxidative stress resistance strategy is vital. Interrogation of the F. alocis genome identified the HMPREF0389_00796 gene that encodes for a putative superoxide reductase (SOR) enzyme. SORs are non-heme, iron-containing enzymes that can catalyze the reduction of superoxide radicals to hydrogen peroxide and are important in the protection against oxidative stress. In this study, we have functionally characterized the putative SOR (FA796) from F. alocis ATCC 35896. The recombinant FA796 protein, which is predicted to be a homotetramer of the 1Fe-SOR class, can reduce superoxide radicals. F. alocis FLL141 (∆FA796::ermF) was significantly more sensitive to oxygen/air exposure compared to the parent strain. Sensitivity correlated with the level of intracellular superoxide radicals. Additionally, the FA796-defective mutant had increased sensitivity to hydrogen peroxide-induced stress, was inhibited in its ability to form biofilm and had reduced survival in epithelial cells. Collectively, these results suggest that the F. alocis SOR protein is a key enzymatic scavenger of superoxide radicals and protects the bacterium from oxidative stress conditions.


Asunto(s)
Clostridiales/metabolismo , Clostridiales/fisiología , Estrés Oxidativo/fisiología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Biopelículas/crecimiento & desarrollo , Células Cultivadas , Células Epiteliales/microbiología , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/metabolismo
15.
PLoS One ; 14(9): e0223145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31545847

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0063367.].

16.
J Bacteriol ; 200(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30249709

RESUMEN

Porphyromonas gingivalis, the major etiologic agent in adult periodontitis, produces large amounts of proteases that are important for its survival and pathogenesis. The activation/maturation of gingipains, the major proteases, in P. gingivalis involves a complex network of processes which are not yet fully understood. VimA, a putative acetyltransferase and virulence-modulating protein in P. gingivalis, is known to be involved in gingipain biogenesis. P. gingivalis FLL92, a vimA-defective isogenic mutant (vimA::ermF-ermAM) showed late-onset gingipain activity at stationary phase, indicating the likelihood of a complementary functional VimA homolog in that growth phase. This study aimed to identify a functional homolog(s) that may activate the gingipains in the absence of VimA at stationary phase. A bioinformatics analysis showed five putative GCN5-related N-acetyltransferases (GNAT) encoded in the P. gingivalis genome that are structurally related to VimA. Allelic exchange mutagenesis was used to make deletion mutants for these acetyltransferases in the P. gingivalisvimA-defective mutant FLL102 (ΔvimA::ermF) genetic background. One of the mutants, designated P. gingivalis FLL126 (ΔvimA-ΔPG1842), did not show any late-onset gingipain activity at stationary phase compared to that of the parent strain P. gingivalis FLL102. A Western blot analysis of stationary-phase extracellular fractions with antigingipain antibodies showed immunoreactive bands that were similar in size to those for the progingipain species present only in the ΔvimA-ΔPG1842 isogenic mutant. Both recombinant VimA and PG1842 proteins acetylated Y230, K247, and K248 residues in the pro-RgpB substrate. Collectively, these findings indicate that PG1842 may play a significant role in the activation/maturation of gingipains in P. gingivalisIMPORTANCE Gingipain proteases are key virulence factors secreted by Porphyromonas gingivalis that cause periodontal tissue damage and the degradation of the host immune system proteins. Gingipains are translated as an inactive zymogen to restrict intracellular proteolytic activity before secretion. Posttranslational processing converts the inactive proenzyme to a catalytically active protease. Gingipain biogenesis, including its secretion and activation, is a complex process which is still not fully understood. One recent study identified acetylated lysine residues in the three gingipains RgpA, RgpB, and Kgp, thus indicating a role for acetylation in gingipain biogenesis. Here, we show that the acetyltransferases VimA and PG1842 can acetylate the pro-RgpB gingipain species. These findings further indicate that acetylation is a potential mechanism in the gingipain activation/maturation pathway in P. gingivalis.


Asunto(s)
Acetiltransferasas/metabolismo , Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Mutación , Porphyromonas gingivalis/patogenicidad , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína-Endopeptidasas Gingipaínas , Modelos Moleculares , Operón , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/genética , Conformación Proteica , Procesamiento Proteico-Postraduccional , Virulencia
17.
Microbiology (Reading) ; 162(2): 256-267, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26581883

RESUMEN

Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential -10 region at -3 nt and a -35 region at -39 nt. Isogenic P. gingivalis mutants FLL273 (PG1777 : : ermF-ermAM) and FLL293 (PG1779 : : ermF-ermAM) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. P. gingivalis FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO4 and Fe(NH4)2(SO4).6H2O. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the grpE-dnaJ-PG1777-PG1778-PG1779 transcriptional unit may play an important role in oxidative stress resistance in P. gingivalis via its ability to protect against DNA damage.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Proteínas de Unión a Hierro/metabolismo , Estrés Oxidativo/fisiología , Porphyromonas gingivalis/genética , Daño del ADN/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Familia de Multigenes/genética , Estrés Oxidativo/efectos de los fármacos , Porphyromonas gingivalis/efectos de los fármacos , Transcripción Genética/genética
18.
J Nanomater ; 20162016.
Artículo en Inglés | MEDLINE | ID: mdl-30245705

RESUMEN

Advances in nanotechnology provide opportunities for the prevention and treatment of periodontal disease. While physicochemical properties of Ag containing nanoparticles (NPs) are known to influence the magnitude of their toxicity, it is thought that nanosilver can be made less toxic to eukaryotes by passivation of the NPs with a benign metal. Moreover, the addition of other noble metals to silver nanoparticles, in the alloy formulation, is known to alter the silver dissolution behavior. Thus, we synthesized glutathione capped Ag/Au alloy bimetallic nanoparticles (NPs) via the galvanic replacement reaction between maltose coated Ag NPs and chloroauric acid (HAuCl4) in 5% aqueous triblock F127 copolymer solution. We then compared the antibacterial activity of the Ag/Au NPs to pure Ag NPs on Porphyromonas gingivalis W83, a key pathogen in the development of periodontal disease. Only partially oxidized glutathione capped Ag and Ag/Au (Au:Ag≈0.2) NPs inhibited the planktonic growth of P. gingivalis W83. This effect was enhanced in the presence of hydrogen peroxide, which simulates the oxidative stress environment in the periodontal pocket during chronic inflammation.

19.
Curr Oral Health Rep ; 2(1): 48-56, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26120510

RESUMEN

Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola-the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community.

20.
Microbes Infect ; 17(7): 517-30, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25841800

RESUMEN

Filifactor alocis, a previously unrecognized Gram-positive anaerobic rod, is now considered a new emerging pathogen that may play a significant role in periodontal disease. F. alocis' unique characteristics and variations at the molecular level that may be responsible for the functional changes required to mediate the pathogenic process are discussed.


Asunto(s)
Bacterias Anaerobias/patogenicidad , Firmicutes/patogenicidad , Medicina Oral , Periodontitis/patología , Bacterias Anaerobias/inmunología , Adhesión Bacteriana , Firmicutes/inmunología , Firmicutes/fisiología , Humanos , Estrés Oxidativo , Periodontitis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...