Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Biointerphases ; 18(6)2023 11 01.
Article En | MEDLINE | ID: mdl-38108477

This Tutorial focuses on the use of secondary ion mass spectrometry for the analysis of cellular and tissue samples. The Tutorial aims to cover the considerations in sample preparation analytical set up and some specific aspects of data interpretation associated with such analysis.


Spectrometry, Mass, Secondary Ion
2.
Angew Chem Int Ed Engl ; 62(15): e202217993, 2023 04 03.
Article En | MEDLINE | ID: mdl-36749546

Aberrant functioning of the proteasome has been associated with crucial pathologic conditions including neurodegeneration. Yet, the complex underlying causes at the cellular level remain unclear and there are conflicting reports of neuroprotective to neurodegenerative effects of proteasomal inhibitors such as lactacystin that are utilised as models for neurodegenerative diseases. The conflicting results may be associated with different dose regimes of lactacystin and hence we have performed a dose dependent study of the effects of lactacystin to identify concurrent changes in the cell membrane lipid profile and the dynamics of exocytosis using a combination of surface sensitive mass spectrometry and single cell amperometry. Significant changes of negatively charged lipids were associated with different lactacystin doses that showed a weak correlation with exocytosis while changes in PE and PE-O lipids showed dose dependent changes correlated with initial pore formation and total release of vesicle content respectively.


Membrane Lipids , Proteasome Inhibitors , Proteasome Inhibitors/pharmacology , Mass Spectrometry , Exocytosis
3.
Anal Bioanal Chem ; 413(16): 4181-4194, 2021 Jul.
Article En | MEDLINE | ID: mdl-33974088

This work assesses the potential of new water cluster-based ion beams for improving the capabilities of secondary ion mass spectrometry (SIMS) for in situ lipidomics. The effect of water clusters was compared to carbon dioxide clusters, along with the effect of using pure water clusters compared to mixed water and carbon dioxide clusters. A signal increase was found when using pure water clusters. However, when analyzing cells, a more substantial signal increase was found in positive ion mode when the water clusters also contained carbon dioxide, suggesting that additional reactions are in play. The effects of using a water primary ion beam on a more complex sample were investigated by analyzing brain tissue from an Alzheimer's disease transgenic mouse model. The results indicate that the ToF-SIMS results are approaching those from MALDI as ToF-SIMS was able to image lyso-phosphocholine (LPC) lipids, a lipid class that for a long time has eluded detection during SIMS analyses. Gangliosides, sulfatides, and cholesterol were also imaged.


Alzheimer Disease/pathology , Brain/pathology , Carbon Dioxide/analysis , Lipids/analysis , Water/analysis , Animals , Brain Chemistry , Disease Models, Animal , Humans , MCF-7 Cells , Mice , Mice, Transgenic , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Secondary Ion
4.
Anal Bioanal Chem ; 413(2): 445-453, 2021 Jan.
Article En | MEDLINE | ID: mdl-33130974

Changes in the membrane composition of sub-populations of cells can influence different properties with importance to tumour growth, metastasis and treatment efficacy. In this study, we use correlated fluorescence microscopy and ToF-SIMS with C60+ and (CO2)6k+ ion beams to identify and characterise sub-populations of cells based on successful transfection leading to over-expression of CCTδ, a component of the multi-subunit molecular chaperone named chaperonin-containing tailless complex polypeptide 1 (CCT). CCT has been linked to increased cell growth and proliferation and is known to affect cell morphology but corresponding changes in lipid composition of the membrane have not been measured until now. Multivariate analysis of the surface mass spectra from single cells, focused on the intact lipid ions, indicates an enrichment of phosphatidylethanolamine species in the transfected cells. While the lipid changes in this case are driven by the structural changes in the protein cytoskeleton, the consequence of phosphatidylethanolamine enrichment may have additional implications in cancer such as increased membrane fluidity, increased motility and an ability to adapt to a depletion of unsaturated lipids during cancer cell proliferation. This study demonstrates a successful fluorescence microscopy-guided cell by cell membrane lipid analysis with broad application to biological investigation.Graphical abstract.


Microscopy, Fluorescence/methods , Molecular Chaperones/analysis , Neoplasms/metabolism , Phosphatidylethanolamines/analysis , Spectrometry, Mass, Secondary Ion/methods , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Cytoskeleton/metabolism , Gold , Green Fluorescent Proteins/metabolism , Ions , Lipids/chemistry , Melanoma, Experimental , Mice , Multivariate Analysis , Principal Component Analysis
5.
J Am Soc Mass Spectrom ; 31(10): 2133-2142, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-32897704

Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na+ and Ca2+ overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information in situ within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 µm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 µm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.


Lipids/analysis , Myocardial Infarction/pathology , Myocardium/pathology , Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Disease Models, Animal , Mice , Myocardium/chemistry
6.
Biointerphases ; 15(4): 041012, 2020 08 28.
Article En | MEDLINE | ID: mdl-32859133

Basal cell carcinoma (BCC) is the most common skin malignancy. In fact, it is as common as the sum of all other skin malignancies combined and the incidence is rising. In this focused and histology-guided study, tissue from a patient diagnosed with aggressive BCC was analyzed by imaging mass spectrometry in order to probe the chemistry of the complex tumor environment. Time-of-flight secondary ion mass spectrometry using a (CO2)6 k + gas cluster ion beam allowed a wide range of lipid species to be detected. Their distributions were then imaged in the tissue that contained small tumor islands that were histologically classified as more/less aggressive. Maximum autocorrelation factor (MAF) analysis highlighted chemical differences between the tumors and the surrounding stroma. A closer inspection of the distribution of individual ions, selected based on the MAF loadings, showed heterogeneity in signal between different microtumors, suggesting the potential of chemically grading the aggressiveness of each individual tumor island. Sphingomyelin lipids were found to be located in stroma containing inflammatory cells.


Carcinoma, Basal Cell/pathology , Lipids/analysis , Skin Neoplasms/pathology , Spectrometry, Mass, Secondary Ion , Biomarkers, Tumor/analysis , Carcinoma, Basal Cell/metabolism , Humans , Principal Component Analysis , Skin Neoplasms/metabolism , Tumor Microenvironment
7.
J Neurochem ; 154(1): 84-98, 2020 07.
Article En | MEDLINE | ID: mdl-32141089

There is emerging evidence that amyloid beta (Aß) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aß42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aß plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aß plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aß deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aß plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.


Alzheimer Disease/pathology , Apolipoproteins E/metabolism , Brain/pathology , Myelin Sheath/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Lipidomics/methods , Lipids/analysis , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Annu Rev Anal Chem (Palo Alto Calif) ; 13(1): 249-271, 2020 06 12.
Article En | MEDLINE | ID: mdl-32212820

Lipids are an important class of biomolecules with many roles within cells and tissue. As targets for study, they present several challenges. They are difficult to label, as many labels lack the specificity to the many different lipid species or the labels maybe larger than the lipids themselves, thus severely perturbing the natural chemical environment. Mass spectrometry provides exceptional specificity and is often used to examine lipid extracts from different samples. However, spatial information is lost during extraction. Of the different imaging mass spectrometry methods available, secondary ion mass spectrometry (SIMS) is unique in its ability to analyze very small features, with probe sizes <50 nm available. It also offers high surface sensitivity and 3D imaging capability on a subcellular scale. This article reviews the current capabilities and some remaining challenges associated with imaging the diverse lipids present in cell and tissue samples. We show how the technique has moved beyond show-and-tell, proof-of-principle analysis and is now being used to address real biological challenges. These include imaging the microenvironment of cancer tumors, probing the pathophysiology of traumatic brain injury, or tracking the lipid composition through bacterial membranes.


Lipids/analysis , Spectrometry, Mass, Secondary Ion
9.
ACS Chem Neurosci ; 11(1): 14-24, 2020 01 02.
Article En | MEDLINE | ID: mdl-31774647

Ganglioside metabolism is significantly altered in Alzheimer's disease (AD), which is a progressive neurodegenerative disease prominently characterized by one of its pathological hallmarks, amyloid deposits or "senile plaques". While the plaques mainly consist of aggregated variants of amyloid-ß protein (Aß), recent studies have revealed a number of lipid species including gangliosides in amyloid plaques along with Aß peptides. It has been widely suggested that long chain (sphingosine) base (LCBs), C18:1-LCB and C20:1-LCB, containing gangliosides might play different roles in neuronal function in vivo. In order to elucidate region-specific aspects of amyloid-plaque associated C18:1-LCB and C20:1-LCB ganglioside accumulations, high spatial resolution (10 µm per pixel) matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) of gangliosides in amyloid plaques was performed in hippocampal and adjacent cortical regions of 12 month old 5xFAD mouse coronal brain sections from two different stereotaxic coordinates (bregma points, -2.2 and -2.7 mm). MALDI-IMS uncovered brain-region (2 and 3D) and/or LCB specific accumulations of monosialogangliosides (GMs): GM1, GM2, and GM3 in the hippocampal and cortical amyloid plaques. The results reveal monosialogangliosides to be an important component of amyloid plaques and the accumulation of different gangliosides is region and LCB specific in 12 month old 5xFAD mouse brain. This is discussed in relation to amyloid-associated AD pathogenesis such as lipid related immune changes in amyloid plaques, AD specific ganglioside metabolism, and, notably, AD-associated impaired neurogenesis in the subgranular zone.


Alzheimer Disease/pathology , Brain/pathology , Gangliosides/chemistry , Plaque, Amyloid/chemistry , Animals , Lipidomics , Mice , Mice, Transgenic , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Anal Chem ; 91(17): 11355-11361, 2019 09 03.
Article En | MEDLINE | ID: mdl-31359753

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using a (CO2)6k+ gas cluster ion beam (GCIB) was used to analyze Escherichia coli mutants previously identified as having impaired plasmid transfer capability related to the spread of antibiotic resistance. The subset of mutants selected were expected to result in changes in the bacterial envelope composition through the deletion of genes encoding for FabF, DapF, and Lpp, where the surface sensitivity of ToF-SIMS can be most useful. Analysis of arrays of spotted bacteria allowed changes in the lipid composition of the bacteria to be elucidated using multivariate analysis and confirmed through imaging of individual ion signals. Significant changes in chemical composition were observed, including a surprising loss of cyclopropanated fatty acids in the fabF mutant where FabF is associated with the elongation of FA(16:1) to FA(18:1) and not cyclopropane formation. The ability of the GCIB to generate increased higher mass signals from biological samples allowed intact lipid A (m/z 1796) to be detected on the bacteria and, despite a 40 keV impact energy, depth profiled through the bacterial envelope along with other high mass ions including species at m/z 1820 and 2428, attributed to ECACYC, that were only observed below the surface of the bacteria and were notably absent in the depth profile of the lpp mutant. The analysis provides new insights into the action of the specific pathways targeted in this study and paves the way for whole new avenues for the characterization of intact molecules within the bacterial envelope.


Cell Membrane/chemistry , Escherichia coli/genetics , Plasmids/metabolism , Spectrometry, Mass, Secondary Ion/methods , Acetyltransferases/genetics , Amino Acid Isomerases/genetics , Bacterial Outer Membrane Proteins/genetics , Drug Resistance, Microbial , Escherichia coli/chemistry , Escherichia coli/enzymology , Escherichia coli/ultrastructure , Escherichia coli Proteins/genetics , Fatty Acid Synthase, Type II/genetics , Fatty Acids/analysis , Lipid A/analysis , Lipids/analysis , Lipoproteins/genetics , Mutant Proteins
11.
Anal Chem ; 90(22): 13580-13590, 2018 11 20.
Article En | MEDLINE | ID: mdl-30346141

The analysis of small polar compounds with ToF-SIMS and MALDI-ToF-MS have been generally hindered by low detection sensitivity, poor ionization efficiency, ion suppression, analyte in-source fragmentation, and background spectral interferences from either a MALDI matrix and/or endogenous tissue components. Chemical derivatization has been a well-established strategy for improved mass spectrometric detection of many small molecular weight endogenous compounds in tissues. Here, we present a devised strategy to selectively derivatize and sensitively detect catecholamines with both secondary ion ejection and laser desorption ionization strategies, which are used in many imaging mass spectrometry (IMS) experiments. Chemical derivatization of catecholamines was performed by a reaction with a synthesized permanent pyridinium-cation-containing boronic acid molecule, 4-( N-methyl)pyridinium boronic acid, through boronate ester formation (boronic acid-diol reaction). The derivatization facilitates their sensitive detection with ToF-SIMS and LDI-ToF mass spectrometric techniques. 4-( N-Methyl)pyridinium boronic acid worked as a reactive matrix for catecholamines with LDI and improved the sensitivity of detection for both SIMS and LDI, while the isotopic abundances of the boron atom reflect a unique isotopic pattern for derivatized catecholamines in MS analysis. Finally, the devised strategy was applied, as a proof of concept, for on-tissue chemical derivatization and GCIB-ToF-SIMS (down to 3 µm per pixel spatial resolution) and LDI-ToF mass spectrometry imaging of dopamine, epinephrine, and norepinephrine in porcine adrenal gland tissue sections. MS/MS using collision-induced dissociation (CID)-ToF-ToF-SIMS was subsequently employed on the same tissue sections after SIMS and LDI mass spectrometry imaging experiments, which provided tandem MS information for the validation of the derivatized catecholamines in situ. This methodology can be a powerful approach for the selective and sensitive ionization/detection and spatial localization of diol-containing molecules such as aminols, vic-diols, saccharides, and glycans along with catecholamines in tissue sections with both SIMS and LDI/MALDI-MS techniques.


Boronic Acids/chemistry , Catecholamines/chemistry , Mass Spectrometry/methods , Pyridines/chemistry
12.
Mol Imaging Biol ; 20(6): 888-901, 2018 12.
Article En | MEDLINE | ID: mdl-30167993

Over the last two decades, mass spectrometry imaging (MSI) has been increasingly employed to investigate the spatial distribution of a wide variety of molecules in complex biological samples. MSI has demonstrated its potential in numerous applications from drug discovery, disease state evaluation through proteomic and/or metabolomic studies. Significant technological and methodological advancements have addressed natural limitations of the techniques, i.e., increased spatial resolution, increased detection sensitivity especially for large molecules, higher throughput analysis and data management. One of the next major evolutions of MSI is linked to the introduction of imaging mass cytometry (IMC). IMC is a multiplexed method for tissue phenotyping, imaging signalling pathway or cell marker assessment, at sub-cellular resolution (1 µm). It uses MSI to simultaneously detect and quantify up to 30 different antibodies within a tissue section. The combination of MSI with other molecular imaging techniques can also provide highly relevant complementary information to explore new scientific fields. Traditionally, classical histology (especially haematoxylin and eosin-stained sections) is overlaid with molecular profiles obtained by MSI. Thus, MSI-based molecular histology provides a snapshot of a tissue microenvironment and enables the correlation of drugs, metabolites, lipids, peptides or proteins with histological/pathological features or tissue substructures. Recently, many examples combining MSI with other imaging modalities such as fluorescence, confocal Raman spectroscopy and MRI have emerged. For instance, brain pathophysiology has been studied using both MRI and MSI, establishing correlations between in and ex vivo molecular imaging techniques. Endogenous metabolite and small peptide modulation were evaluated depending on disease state. Here, we review advanced 'hot topics' in MSI development and explore the combination of MSI with established molecular imaging techniques to improve our understanding of biological and pathophysiological processes.


Mass Spectrometry/methods , Molecular Imaging/methods , Organ Specificity , Biomarkers/analysis , Data Interpretation, Statistical , Humans
13.
Rapid Commun Mass Spectrom ; 32(17): 1473-1480, 2018 Sep 15.
Article En | MEDLINE | ID: mdl-29856895

RATIONALE: Diacylglycerides (DAGs) and triacylglycerides (TAGs) are two important lipid classes present in all mammalian cells that share similar chemical structures but differ in biological function in cells and tissues. Differentiation of these two species during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis is therefore important, but has been difficult due to the formation of DAG-like ions during the ionization process of TAGs. METHODS: We investigated the use of salt adduct formation as a quick and simple method to determine the origin of the DAG-like ions in ToF-SIMS spectra. NaCl was added to lipid standards of a DAG and a TAG and differences in fragmentation patterns were identified. The salt was then applied to prepared tissue samples by spraying with a saturated solution of NaCl in methanol and samples were analysed with ToF-SIMS using a 40 keV (CO2 )6k + primary ion beam. RESULTS: A 40 Da peak shift was observed in the DAG spectrum that was not observed in the TAG spectrum ([M + H - H2 O]+ to [M + Na]+ ) while the isobaric [M - RCOO]+ peak did not shift allowing differentiation between the two species. Spraying NaCl on to tissue sections indicated that the DAG-like ions originated from TAGs. CONCLUSIONS: With the method described in this paper, simple addition of salt by spraying on the sample leads to better interpretation of complex mass spectra from biological tissue samples, discriminating DAG and TAG fragment peaks.

14.
ACS Chem Neurosci ; 9(6): 1462-1468, 2018 06 20.
Article En | MEDLINE | ID: mdl-29508991

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the effects of cocaine versus methylphenidate administration on both the localization and abundance of lipids in Drosophila melanogaster brain. A J105 ToF-SIMS with a 40 keV gas cluster primary ion source enabled us to probe molecular ions of biomolecules on the fly with a spatial resolution of ∼3 µm, giving us unique insights into the effect of these drugs on molecular lipids in the nervous system. Significant changes in phospholipid composition were observed in the central brain for both. Principal components image analysis revealed that changes occurred mainly for phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols. When the lipid changes caused by cocaine were compared with those induced by methylphenidate, it was shown that these drugs exert opposite effects on the brain lipid structure. We speculate that this might relate to the molecular mechanism of cognition and memory.


Brain/drug effects , Cocaine/pharmacology , Lipid Metabolism/drug effects , Methylphenidate/pharmacology , Spectrometry, Mass, Secondary Ion , Animals , Drosophila , Drosophila melanogaster/metabolism , Phosphatidylethanolamines/pharmacology , Principal Component Analysis/methods , Spectrometry, Mass, Secondary Ion/methods
15.
Biointerphases ; 13(3): 03B402, 2018 01 12.
Article En | MEDLINE | ID: mdl-29329503

A set of basal cell carcinoma samples, removed by Mohs micrographic surgery and pathologically identified as having an aggressive subtype, have been analyzed using time-of-flight secondary ion mass spectrometry (SIMS). The SIMS analysis employed a gas cluster ion beam (GCIB) to increase the sensitivity of the technique for the detection of intact lipid species. The GCIB also allowed these intact molecular signals to be maintained while surface contamination and delocalized chemicals were removed from the upper tissue surface. Distinct mass spectral signals were detected from different regions of the tissue (epidermis, dermis, hair follicles, sebaceous glands, scar tissue, and cancerous tissue) allowing mass spectral pathology to be performed. The cancerous regions of the tissue showed a particular increase in sphingomyelin signals that were detected in both positive and negative ion mode along with increased specific phosphatidylserine and phosphatidylinositol signals observed in negative ion mode. Samples containing mixed more and less aggressive tumor regions showed increased phosphatidylcholine lipid content in the less aggressive areas similar to a punch biopsy sample of a nonaggressive nodular lesion.


Carcinoma, Basal Cell/pathology , Spectrometry, Mass, Secondary Ion/methods , Biopsy , Humans , Microsurgery , Phospholipids/analysis , Skin/pathology
16.
Anal Bioanal Chem ; 409(16): 3923-3932, 2017 Jun.
Article En | MEDLINE | ID: mdl-28389914

Lipids are abundant biomolecules performing central roles to maintain proper functioning of cells and biological bodies. Due to their highly complex composition, it is critical to obtain information of lipid structures in order to identify particular lipids which are relevant for a biological process or metabolic pathway under study. Among currently available molecular identification techniques, MS/MS in secondary ion mass spectrometry (SIMS) imaging has been of high interest in the bioanalytical community as it allows visualization of intact molecules in biological samples as well as elucidation of their chemical structures. However, there have been few applications using SIMS and MS/MS owing to instrumental challenges for this capability. We performed MS and MS/MS imaging to study the lipid structures of Drosophila brain using the J105 and 40-keV Ar4000+ gas cluster ion source, with the novelty being the use of MS/MS SIMS analysis of intact lipids in the fly brain. Glycerophospholipids were identified by MS/MS profiling. MS/MS was also used to characterize diglyceride fragment ions and to identify them as triacylglyceride fragments. Moreover, MS/MS imaging offers a unique possibility for detailed elucidation of biomolecular distribution with high accuracy based on the ion images of its fragments. This is particularly useful in the presence of interferences which disturb the interpretation of biomolecular localization. Graphical abstract MS/MS was performed during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of Drosophila melongaster (fruit fly) to elucidate the structure and origin of different chemical species in the brain including a range of different phospholipid classes (PC, PI, PE) and di- and triacylglycerides (DAG & TAG) species where reference MS/MS spectra provided a potential means of discriminating between the isobaric [M-OH]+ ion of DAGs and the [M-RCO]+ ion of TAGs.


Brain Chemistry , Drosophila/chemistry , Lipids/analysis , Spectrometry, Mass, Secondary Ion/methods , Animals , Diglycerides/analysis , Glycerophospholipids/analysis , Tandem Mass Spectrometry/methods
17.
Anal Chem ; 88(23): 11946-11954, 2016 12 06.
Article En | MEDLINE | ID: mdl-27783898

Breast cancer is an umbrella term used to describe a collection of different diseases with broad inter- and intratumor heterogeneity. Understanding this variation is critical in order to develop, and precisely prescribe, new treatments. Changes in the lipid metabolism of cancerous cells can provide important indications as to the metabolic state of the cells but are difficult to investigate with conventional histological methods. Due to the introduction of new higher energy (40 kV) gas cluster ion beams (GCIBs), time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is now capable of providing information on the distribution of hundreds of molecular species simultaneously on a cellular to subcellular scale. GCIB-ToF-SIMS was used to elucidate changes in lipid composition in nine breast cancer biopsy samples. Improved molecular signal generation by the GCIB produced location-specific information that revealed elevated levels of essential lipids to be related to inflammatory cells in the stroma, while cancerous areas were dominated by nonessential fatty acids and a variety of phosphatidylinositol species with further in-tumor variety arising from decreased desaturase activity. These changes in lipid composition due to different enzyme activity are seemingly independent of oxygen availability and can be linked to favorable cell membrane properties for either proliferation/invasion or drug resistance/survival.


Breast Neoplasms/diagnostic imaging , Fatty Acids/analysis , Lipids/analysis , Optical Imaging , Tumor Microenvironment , Argon/chemistry , Female , Fullerenes/chemistry , Humans , Ions/chemistry , Spectrometry, Mass, Secondary Ion
18.
Sci Rep ; 6: 33702, 2016 09 21.
Article En | MEDLINE | ID: mdl-27650365

Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.


Cell Membrane/metabolism , Cholesterol/metabolism , Exocytosis/physiology , Neurons/metabolism , Animals , Neurons/cytology , PC12 Cells , Rats
19.
Anal Chem ; 88(17): 8680-8, 2016 09 06.
Article En | MEDLINE | ID: mdl-27479574

Escherichia coli is able to rapidly adjust the biophysical properties of its membrane phospholipids to adapt to environmental challenges including starvation stress. These membrane lipid modifications were investigated in glucose starved E. coli cultures and compared to a ΔrelAΔspoT (ppGpp(0)) mutant strain of E. coli, deficient in the stringent response, by means of time-of-flight-secondary ion mass spectrometry (TOF-SIMS). Recent advances in TOF-SIMS, through the implementation of gas cluster ion beams (GCIBs), now permit the analysis of higher mass species from native, underivatized, biological specimen, i.e., intact bacterial cells. Cultures in stationary phase were found to exhibit a radically different lipid composition as compared to cultures in the exponential growth phase. Wild-type E. coli reacted upon carbon starvation by lipid modifications including elongation, cyclopropanation, and increased cardiolipin formation. Observations are consistent with variants of cardiolipins (CL), phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidic acids (PA), and fatty acids. Notably, despite having a proteomic profile and a gene expression profile somewhat similar to the wild-type during growth, the ppGpp(0) mutant E. coli strain was found to exhibit modified phospholipids corresponding to unsaturated analogues of those found in the wild-type. We concluded that the ppGpp(0) mutant reacts upon starvation stress by elongation and desaturation of fatty acyl chains, implying that only the last step of the lipid modification, the cyclopropanation, is under stringent control. These observations suggest alternative stress response mechanisms and illustrate the role of the RelA and SpoT enzymes in the biosynthetic pathway underlying these lipid modifications.


Cardiolipins/chemistry , Escherichia coli/isolation & purification , Fatty Acids/chemistry , Phosphatidic Acids/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Spectrometry, Mass, Secondary Ion , Time Factors
20.
Anal Bioanal Chem ; 408(24): 6857-68, 2016 Sep.
Article En | MEDLINE | ID: mdl-27549796

We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections. Graphical abstract Schematic of mass spectral imaging of a mouse brain tissue using GCIB-SIMS and MALDI techniques.


Brain Chemistry , Lipids/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Secondary Ion/methods , Animals , Argon/chemistry , Mice , Nanoparticles/chemistry , Phospholipids/analysis , Trifluoroacetic Acid/chemistry
...