Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(21): 27841-27849, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38758246

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising next-generation lithography technique for high-resolution patterning. However, achieving lithographically applicable BCP organization such as out-of-plane lamellae requires proper tuning of interfacial energies between the BCP domains and the substrate, which remains difficult to address effectively and efficiently with high-χ BCPs. Here, we present the successful generation of anisotropic wetting by plasma treatment on patterned spin-on-carbon (SOC) substrates and its application to the DSA of a high-χ Si-containing material, poly(1,1-dimethylsilacyclobutane)-block-polystyrene (PDMSB-b-PS), with a 9 nm half pitch. Exposing the SOC substrate to different plasma chemistries promotes the vertical alignment of the PDMSB-b-PS lamellae within the trenches. In particular, a patterned substrate treated with HBr/O2 plasma gives both a neutral wetting at the bottom interface and a strong PS-affine wetting at the sidewalls of the SOC trenches to efficiently guide the vertical BCP lamellae. Furthermore, prolonged exposure to HBr/O2 plasma enables an adjustment of the trench width and an increased density of BCP lines on the substrate. Experimental observations are in agreement with a free energy configurational model developed to describe the system. These advances, which could be easily implemented in industry, could contribute to the wider adoption of self-assembly techniques in microelectronics, and beyond to applications such as metasurfaces, surface-enhanced Raman spectroscopy, and sensing technologies.

2.
ACS Appl Mater Interfaces ; 15(19): 23736-23748, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37134266

RESUMEN

Top and bottom interfaces of high-χ cylinder-forming polystyrene-block-maltoheptaose (PS-b-MH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PS-b-MH phase-preferential SAP additive is designed to tune the surface energy of the top interface. The self-assembly of PS-b-MH thin films on top of different cross-linked underlayers and including 0-20 wt % of SAP additive is investigated by atomic force microscopy and synchrotron grazing incidence small-angle X-ray scattering analysis. The precise manipulation of the interfaces of ca. 30 nm thick PS-b-MH films not only allows the control of the in-plane/out-of-plane orientation of hexagonally packed (HEX) cylinders but also promotes epitaxial order-order transitions from HEX cylinders to either face-centered orthorhombic or body-centered cubic spheres without modifying the volume fraction of both blocks. This general approach paves the way for the controlled self-assembly of other high-χ BCP systems.

3.
J Am Chem Soc ; 145(8): 4583-4588, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800319

RESUMEN

Fast, low-cost, and efficient energy storage technologies are urgently needed to balance the intermittence of sustainable energy sources. High-power capacitors using organic polymers offer a green and scalable answer. They require dielectrics with high permittivity (εr) and breakdown strength (EB), which bio-based poly(hydroxy urethane)s (PHUs) can provide. PHUs combine high concentrations of hydroxyl and carbamate groups, thus enhancing their εr, and a highly tunable glass transition (Tg), which dictates the regions of low dielectric losses. By reacting erythritol dicarbonate with bio-based diamines, fully bio-based PHUs were synthesized with Tg ∼ 50 °C, εr > 8, EB > 400 MV·m-1, and low losses (tan δ < 0.03). This results in energy storage performance comparable with the flagship petrochemical materials (discharge energy density, Ue > 6 J·cm-3) combined with a remarkably high discharge efficiency, with η = 85% at EB and up to 91% at 0.5 EB. These bio-based PHUs thus represent a highly promising route to green and sustainable energy storage.

4.
Nanotechnology ; 34(17)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36657158

RESUMEN

In this work, we investigated the self-assembly of a lamellar block copolymer (BCP) under different wetting conditions. We explored the influence of the chemical composition of under-layers and top-coats on the thin film stability, self-assembly kinetics and BCP domain orientation. Three different chemistries were chosen for these surface affinity modifiers and their composition was tuned in order to provide either neutral wetting (i.e. an out-of-plane lamellar structure), or affine wetting conditions (i.e. an in-plane lamellar structure) with respect to a sub-10 nm PS-b-PDMSB lamellar system. Using such controlled wetting configurations, the competition between the dewetting of the BCP layer and the self-organization kinetics was explored. We also evaluated the spreading parameter of the BCP films with respect to the configurations of surface-energy modifiers and demonstrated that BCP layers are intrinsically unstable to dewetting in a neutral configuration. Finally, the dewetting mechanisms were evaluated with respect to the different wetting configurations and we clearly observed that the rigidity of the top-coat is a key factor to delay BCP film instability.

5.
Small ; 19(7): e2205254, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504447

RESUMEN

Block copolymer (BCP) self-assembly in thin films is an elegant method to generate nanometric features with tunable geometrical configurations. By combining directed assembly and hybridization methods, advances in nano-manufacturing have been attested over the past decades with flagship applications in lithography and optics. Nevertheless, the range of geometrical configurations is limited by the accessible morphologies inherent to the energy minimization process involved in BCP self-assembly. Layering of nanostructured BCP thin films has been recently proposed in order to enrich the span of nanostructures derived from BCP self-assembly with the formation of non-native heterostructures such as double-layered arrays of nanowires or dots-on-line and dots-in-hole hierarchical structures. In this work, the layer-by-layer method is further exploited for the generation of nano-mesh arrays using nanostructured BCP thin films. In particular, a subtle combination of chemical and topographical fields is leveraged in order to demonstrate design rules for the controlled registration of a BCP layer on top of an underneath immobilized one by the precise tuning of the interfacial chemical field between the two BCP layers.

6.
Nat Commun ; 13(1): 7513, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473874

RESUMEN

The black perovskite phase of CsPbI3 is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI2-based interfacial microstructure into otherwise-unstable CsPbI3 perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI3 perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI3 perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.

7.
ACS Mater Lett ; 4(1): 49-54, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35005627

RESUMEN

Micelle formation inside faujasite (FAU) zeolite, a critical step in the introduction of mesoporosity in zeolites by surfactant templating, has been confirmed by both 13C NMR and Raman spectroscopy. Here we provide unambiguous evidence of the incorporation of surfactant molecules inside zeolites during the first step of the surfactant-templating process followed by their self-assembly into micelles after hydrothermal treatment. The homogeneous presence of these micelles throughout zeolite crystals has been directly observed by Raman microspectroscopy, confirming the uniform incorporation of mesoporosity in zeolites by surfactant templating.

8.
J Colloid Interface Sci ; 609: 375-383, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34902674

RESUMEN

Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (∼95 %). Au nanoresonators possessing heights from 5 - 15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating. The Au nanoresonators were fabricated on an alumina (Al2O3) spacer layer and a reflecting Au mirror, in a film-coupled nanoparticle design. The BCP nanopatterning strategy to produce desired heights of Au nanoresonators was tailored to achieve near-perfect absorption at ≈ 600 nm. The experimental insight described in this work is a step forward towards realizing large area flat optics applications derived from subwavelength-thin metasurfaces.

9.
Biomacromolecules ; 22(12): 4956-4966, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34751573

RESUMEN

Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Elastina , Humanos , Péptidos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
10.
ACS Appl Mater Interfaces ; 13(41): 49184-49193, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34636239

RESUMEN

Directed self-assembly of block copolymers (BCP) is a very attractive technique for the realization of functional nanostructures at high resolution. In this work, we developed full dry-etching strategies for BCP nanolithography using an 18 nm pitch lamellar silicon-containing block copolymer. Both an oxidizing Ar/O2 plasma and a nonoxidizing H2/N2 plasma are used to remove the topcoat material of our BCP stack and reveal the perpendicular lamellae. Under Ar/O2 plasma, an interfacial layer stops the etch process at the topcoat/BCP interface, which provides an etch-stop but also requires an additional CF4-based breakthrough plasma for further etching. This interfacial layer is not present in H2/N2. Increasing the H2/N2 ratio leads to more profound modifications of the silicon-containing lamellae, for which a chemistry in He/N2/O2 rather than Ar/O2 plasma produces a smoother and more regular lithographic mask. Finally, these features are successfully transferred into silicon, silicon-on-insulator, and silicon nitride substrates. This work highlights the performance of a silicon-containing block copolymer at 18 nm pitch to pattern relevant hard-mask materials for various applications, including microelectronics.

11.
Materials (Basel) ; 14(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443227

RESUMEN

This work aims to characterize phase change materials (PCM) for thermal energy storage in buildings (thermal comfort). Fatty acids, biobased organic PCM, are attractive candidates for integration into active or passive storage systems for targeted application. Three pure fatty acids (capric, myristic and palmitic acids) and two eutectic mixtures (capric-myristic and capric-palmitic acids) are studied in this paper. Although the main storage properties of pure fatty acids have already been investigated and reported in the literature, the information available on the eutectic mixtures is very limited (only melting temperature and enthalpy). This paper presents a complete experimental characterization of these pure and mixed fatty acids, including measurements of their main thermophysical properties (melting temperature and enthalpy, specific heats and densities in solid and liquid states, thermal conductivity, thermal diffusivity as well as viscosity) and the properties of interest regarding the system integrating the PCM (energy density, volume expansion). The storage performances of the studied mixtures are also compared to those of most commonly used PCM (salt hydrates and paraffins).

12.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807816

RESUMEN

The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46-58 nm and periodicities of 70-102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.


Asunto(s)
Nanoestructuras/química , Poliestirenos/síntesis química , Rastreo Diferencial de Calorimetría , Norbornanos/química , Polimerizacion , Poliestirenos/química , Solventes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Termogravimetría
13.
ACS Appl Mater Interfaces ; 13(9): 11224-11236, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33621463

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers.

14.
ACS Macro Lett ; 10(12): 1555-1562, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35549149

RESUMEN

Active thermal control will be a major challenge of the twenty-first century, which has emphasized the need for the development of energy-efficient refrigeration techniques such as electrocaloric (EC) cooling. Highly polar semicrystalline VDF-based polymers are promising organic EC materials, however, their cooling performance, which is highly structurally dependent, needs further improvement to become competitive. Here, we report a simple method to increase the crystalline coherence of P(VDF-ter-TrFE-ter-CFE) terpolymer in the plane including the polar direction. This is achieved by blending P(VDF-ter-TrFE-ter-CFE) with minute amounts of P(VDF-co-TrFE) copolymer with similar VDF/TrFE unit content. This similarity allows for a cocrystallization of the copolymer chains in the terpolymer crystalline lamellae, preferentially extending the lateral coherence without lamellar thickening, as validated with a wide range of structural characterization. This trend results in a significant dielectric and electrocaloric enhancement, with a remarkable electrocaloric effect, ΔTEC = 5.2 K, confirmed by direct measurements for a moderate electric field of 90 MV·m-1 in a blend with 1 wt % of copolymer.

15.
Nano Lett ; 21(1): 680-685, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33337891

RESUMEN

Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.

16.
Langmuir ; 36(46): 13872-13880, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33175555

RESUMEN

Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large-period (≈111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes.

17.
ACS Omega ; 5(30): 18651-18661, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32775867

RESUMEN

Cyan Ni1-x Al2+2x/3O4 single-phase pigments with various Ni/Al atomic ratios (from 1:2 down to 1:4) have been prepared by a sol-gel route (Pechini) followed by postannealing treatments. Nickel aluminates crystallize in the well-known spinel structure (Fd3m space group), where metals are located at two different Wyckoff positions: 16d (octahedron) and 8a (tetrahedron). Based on X-ray diffraction (XRD) Rietveld refinements, Ni2+ cations are shown to be partially located in both tetrahedral and octahedral sites and, in addition, cationic vacancies occupy the Oh environment. In the pure-phase series, Ni/Al = 0.35, 0.40, 0.45, as the Al content increases, the Ni2+ rate in the Td site decreases for Ni/Al = 0.45, thus altering the cyan color; within this series, the most saturated cyan coloration is reached for the highest Al concentration. Inorganic pigment drawbacks are their high density and hydrophilic surface, which induce sedimentation and aggregation in nonpolar media used in electrophoretic inks. Hybrid core-shell particle pigments have been synthesized from cyan pigments using nitroxide-mediated radical polymerization (NMRP) with methyl methacrylate monomer in Isopar G, leading to a dispersion of electrically charged hybrids in apolar media. Surface functionalization of the pigments by n-octyltrimethoxysilane (OTS) and n-dodecyltrimethoxysilane (DTS) modifiers has been compared. The inorganic pigments are successfully encapsulated by organic shells to allow a strong decrease in their density. Cyan inks, adequate for their use in e-book readers or other electrophoretic displays, taking further advantage of the high contrast ratio and reflectivity of inorganic pigments in regard to organic dyes, have been stabilized.

18.
RSC Adv ; 10(67): 41088-41097, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-35519210

RESUMEN

In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications.

19.
Angew Chem Int Ed Engl ; 58(51): 18471-18475, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31593354

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are a sub-class of metal-organic frameworks (MOFs). Although generally stable, ZIFs can undergo post-synthetic linker exchange (PSLE) in solution under mild conditions. Herein, we present a novel, solvent-free approach to post-synthetic linker exchange through exposure to linker vapor.

20.
Macromol Rapid Commun ; 40(7): e1800860, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30632643

RESUMEN

3-Miktoarm star terpolymer architecture (3µ-ABC), consisting of three dissimilar polymer chains, A, B, and C connected at a junction point, provides a unique opportunity in the design of complex nanoscale patterns such as Archimedean tilings that are not accessible from linear ABC terpolymers. In this work, the synthesis and the self-assembly of 3-miktoarm star terpolymers, namely, polystyrene-arm-poly(2-vinylpyridine)-arm-polyisoprene (3µ-SPI) into Archimedean tiling patterns is described. Several 3µ-SPI terpolymers are produced via a mid-functional PS-b-P2VP, synthesized by sequential anionic polymerization, using a 1,1-diphenylethylene bearing a tert-butyldimethylsilyl-protected hydroxyl functionality as a core molecule. PI arms with different sizes are then linked to the deprotected hydroxyl function of the core molecule via a Steglich esterification. Solvent-annealed 3µ-SPI thin films exhibit nanoscale prisms arranged into a (4.6.12) Archimedean tiling pattern. Depending on the size of the low etch-resistant PI arm and the solvent selected to promote the self-assembly of 3µ-SPI thin films, the voided columns occupy the square or decagonal sites of the (4.6.12) pattern. The use of this (4.6.12) tiling produced for the first time from self-assembled 3µ-ABC thin films can be a promising route to build 2D photonic crystals having complete photonic band gaps, where the light propagation is completely prohibited.


Asunto(s)
Hemiterpenos/química , Látex/química , Nanoestructuras/química , Poliestirenos/química , Polivinilos/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA