Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 16: 1007199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337857

RESUMEN

Introduction: Children with severe physical disabilities are denied their fundamental right to move, restricting their development, independence, and participation in life. Brain-computer interfaces (BCIs) could enable children with complex physical needs to access power mobility (PM) devices, which could help them move safely and independently. BCIs have been studied for PM control for adults but remain unexamined in children. In this study, we explored the feasibility of BCI-enabled PM control for children with severe physical disabilities, assessing BCI performance, standard PM skills and tolerability of BCI. Materials and methods: Patient-oriented pilot trial. Eight children with quadriplegic cerebral palsy attended two sessions where they used a simple, commercial-grade BCI system to activate a PM trainer device. Performance was assessed through controlled activation trials (holding the PM device still or activating it upon verbal and visual cueing), and basic PM skills (driving time, number of activations, stopping) were assessed through distance trials. Setup and calibration times, headset tolerability, workload, and patient/caregiver experience were also evaluated. Results: All participants completed the study with favorable tolerability and no serious adverse events or technological challenges. Average control accuracy was 78.3 ± 12.1%, participants were more reliably able to activate (95.7 ± 11.3%) the device than hold still (62.1 ± 23.7%). Positive trends were observed between performance and prior BCI experience and age. Participants were able to drive the PM device continuously an average of 1.5 meters for 3.0 s. They were able to stop at a target 53.1 ± 23.3% of the time, with significant variability. Participants tolerated the headset well, experienced mild-to-moderate workload and setup/calibration times were found to be practical. Participants were proud of their performance and both participants and families were eager to participate in future power mobility sessions. Discussion: BCI-enabled PM access appears feasible in disabled children based on evaluations of performance, tolerability, workload, and setup/calibration. Performance was comparable to existing pediatric BCI literature and surpasses established cut-off thresholds (70%) of "effective" BCI use. Participants exhibited PM skills that would categorize them as "emerging operational learners." Continued exploration of BCI-enabled PM for children with severe physical disabilities is justified.

2.
Front Hum Neurosci ; 16: 938708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211121

RESUMEN

Brain-computer interfaces (BCIs) are being investigated as an access pathway to communication for individuals with physical disabilities, as the technology obviates the need for voluntary motor control. However, to date, minimal research has investigated the use of BCIs for children. Traditional BCI communication paradigms may be suboptimal given that children with physical disabilities may face delays in cognitive development and acquisition of literacy skills. Instead, in this study we explored emotional state as an alternative access pathway to communication. We developed a pediatric BCI to identify positive and negative emotional states from changes in hemodynamic activity of the prefrontal cortex (PFC). To train and test the BCI, 10 neurotypical children aged 8-14 underwent a series of emotion-induction trials over four experimental sessions (one offline, three online) while their brain activity was measured with functional near-infrared spectroscopy (fNIRS). Visual neurofeedback was used to assist participants in regulating their emotional states and modulating their hemodynamic activity in response to the affective stimuli. Child-specific linear discriminant classifiers were trained on cumulatively available data from previous sessions and adaptively updated throughout each session. Average online valence classification exceeded chance across participants by the last two online sessions (with 7 and 8 of the 10 participants performing better than chance, respectively, in Sessions 3 and 4). There was a small significant positive correlation with online BCI performance and age, suggesting older participants were more successful at regulating their emotional state and/or brain activity. Variability was seen across participants in regards to BCI performance, hemodynamic response, and discriminatory features and channels. Retrospective offline analyses yielded accuracies comparable to those reported in adult affective BCI studies using fNIRS. Affective fNIRS-BCIs appear to be feasible for school-aged children, but to further gauge the practical potential of this type of BCI, replication with more training sessions, larger sample sizes, and end-users with disabilities is necessary.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3361-3364, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086125

RESUMEN

Brain-computer interfaces (BCIs) are emerging as a new solution for children with severe disabilities to interact with the world. However, BCI technologies have yet to reach end-users in their daily lives due to significant translational gaps. To address these gaps, we applied user-centered design principles to establish a home BCI program for children with quadriplegic cerebral palsy. This work describes the technical development of the software we designed to facilitate BCI use at home. Children and their families were involved at each design stage to evaluate and provide feedback. Since deployment, seven families have successfully used the system independently at home and continue to use BCI at home to further enable participation and independence for their children. Clinical relevance- The design and successful implementation of user-centered software for home use will both inform on the feasibility of BCI as a long-term access solution for children with neurological disabilities as well as decrease barriers of accessibility and availability of BCI technologies for end-users.


Asunto(s)
Interfaces Cerebro-Computador , Parálisis Cerebral , Personas con Discapacidad , Niño , Electroencefalografía , Humanos , Programas Informáticos
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5864-5867, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892453

RESUMEN

Children with severe physical disabilities are often unable to independently explore their environments, further contributing to complex developmental delays. Brain-computer interfaces (BCIs) could be a novel access method to power mobility for children who struggle to use existing alternate access technologies, allowing them to reap the developmental, social, and psychological benefits of independent mobility. In this pilot study we demonstrated that children with quadriplegic cerebral palsy can use a simple BCI system to explore movement with a power mobility device. Four children were able to use the BCI to drive forward at least 7m, although more practice is needed to achieve more efficient driving skills through sustained BCI activations.


Asunto(s)
Interfaces Cerebro-Computador , Dispositivos de Autoayuda , Niño , Electroencefalografía , Humanos , Movimiento , Proyectos Piloto
5.
Sci Rep ; 11(1): 8660, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883593

RESUMEN

Thorough preclinical evaluation of functionalized biomaterials for treatment of large bone defects is essential prior to clinical application. Using in vivo micro-computed tomography (micro-CT) and mouse femoral defect models with different defect sizes, we were able to detect spatio-temporal healing patterns indicative of physiological and impaired healing in three defect sub-volumes and the adjacent cortex. The time-lapsed in vivo micro-CT-based approach was then applied to evaluate the bone regeneration potential of functionalized biomaterials using collagen and bone morphogenetic protein (BMP-2). Both collagen and BMP-2 treatment led to distinct changes in bone turnover in the different healing phases. Despite increased periosteal bone formation, 87.5% of the defects treated with collagen scaffolds resulted in non-unions. Additional BMP-2 application significantly accelerated the healing process and increased the union rate to 100%. This study further shows potential of time-lapsed in vivo micro-CT for capturing spatio-temporal deviations preceding non-union formation and how this can be prevented by application of functionalized biomaterials. This study therefore supports the application of longitudinal in vivo micro-CT for discrimination of normal and disturbed healing patterns and for the spatio-temporal characterization of the bone regeneration capacity of functionalized biomaterials.


Asunto(s)
Sustitutos de Huesos/metabolismo , Curación de Fractura , Fracturas Óseas/terapia , Animales , Femenino , Fracturas del Fémur/patología , Fracturas del Fémur/terapia , Fracturas Óseas/patología , Ratones , Ratones Endogámicos C57BL , Sistemas Microelectromecánicos , Imagen de Lapso de Tiempo
6.
Front Hum Neurosci ; 14: 593883, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343318

RESUMEN

Thousands of youth suffering from acquired brain injury or other early-life neurological disease live, mature, and learn with only limited communication and interaction with their world. Such cognitively capable children are ideal candidates for brain-computer interfaces (BCI). While BCI systems are rapidly evolving, a fundamental gap exists between technological innovators and the patients and families who stand to benefit. Forays into translating BCI systems to children in recent years have revealed that kids can learn to operate simple BCI with proficiency akin to adults. BCI could bring significant boons to the lives of many children with severe physical impairment, supporting their complex physical and social needs. However, children have been neglected in BCI research and a collaborative BCI research community is required to unite and push pediatric BCI development forward. To this end, the pediatric BCI Canada collaborative network (BCI-CAN) was formed, under a unified goal to cooperatively drive forward pediatric BCI innovation and impact. This article reflects on the topics and discussions raised in the foundational BCI-CAN meeting held in Toronto, ON, Canada in November 2019 and suggests the next steps required to see BCI impact the lives of children with severe neurological disease and their families.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA